Journal of Applied Electrochemistry

, Volume 35, Issue 11, pp 1073–1080 | Cite as

Synthesis of cathode material LiNi1-y Co y O2 by a simplified combustion method

  • MyoungYoup Song
  • Ikhyun Kwon
  • Hunuk Kim


The optimum conditions for synthesizing LiNi1-y Co y O2 (y=0.1, 0.3 and 0.5) by a simplified combustion method, in which the preheating step is omitted, and the electrochemical properties of these materials were investigated. The optimum condition for synthesizing LiNi0.9Co0.1O2 by the simplified combustion method is calcination at 800 °C for 12 h in air in 3.6 mole ratio of urea to nitrate. The LiNi0.9Co0.1O2 synthesized under these conditions shows the smallest R-factor{(I 006+I 102)/I 101} and the largest I 003/I 104, indicating better hexagonal ordering and less cation mixing, respectively. The LiNi0.7Co0.3O2 synthesized at 800 °C for 12 h in air in 3.6 mole ratio of urea to nitrate has the largest first discharge capacity 156.2 mA h g−1 at 0.5C and shows relatively good cycling performance. This sample shows better hexagonal ordering and less cation mixing than the other samples. The particle size of the LiNi0.7Co0.3O2 is relatively small and its particles are spherical with uniform particle size.


a simplified combustion method cation mixing cycling performance first discharge capacity hexagonal ordering LiNi1-yCoyO2 optimum synthesizing conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by grant No. R05-2002-000860-0 from the Basic Research Program of the Korea Science and Engineering Foundation.


  1. 1.
    Tarascon J.M., Wang E., Shokoohi F.K., Mckinnon W.R., Colson S., (1991) J. Electrochem. Soc. 138: 2859CrossRefGoogle Scholar
  2. 2.
    Armstrong, Bruce P.G., (1996) Lett. Nat. 381: 499CrossRefGoogle Scholar
  3. 3.
    Song, Ahn D.S., (1998) Solid State Ion. 112: 245CrossRefGoogle Scholar
  4. 4.
    Ozawa, (1994) Solid state Ion. 69: 212CrossRefGoogle Scholar
  5. 5.
    Alcátara, Lavela P., Tirado J.L., Stoyanova R., Zhecheva E., (1997) J. Solid State Chem. 134: 265CrossRefGoogle Scholar
  6. 6.
    Peng S., Wan C.R., Jiang C.Y., (1998) J. Power Sources 72: 215CrossRefGoogle Scholar
  7. 7.
    Dahn J.R., von Sacken U., Michal C.A., (1990) Solid State Ion. 44: 87CrossRefGoogle Scholar
  8. 8.
    Dahn J.R., von Sacken U., Juzkow M.W., AlJanaby H., (1991) J. Electrochem. Soc. 138: 2207CrossRefGoogle Scholar
  9. 9.
    Marini A., Massarotti V., Berbenni V., Capsoni D., Riccardi R., Antolini B., Passalacqua B., (1991) Solid State Ion. 45: 143CrossRefGoogle Scholar
  10. 10.
    Ebner W., Fouchard D., Xie L., (1994) Solid State Ion. 69: 238CrossRefGoogle Scholar
  11. 11.
    Nishida Y., Nakane K., Stoh T., (1997) J. Power Sources 68: 561CrossRefGoogle Scholar
  12. 12.
    Gao Y., Yakovleva M.V., Ebner W.B., (1998) Electrochemical and Solid-State Letters. 1(3): 36CrossRefGoogle Scholar
  13. 13.
    Fey G.T.K., Chen J.G., Subramanian V., Osaka T., (2002) J. Power Sources 112: 384CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Division of Advanced Materials Engineering, Research Center of Advanced Materials DevelopmentEngineering Research Institute, Chonbuk National universityDeogjindong Deogjingu JeonjuRepublic of Korea

Personalised recommendations