Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 11, pp 1067–1072 | Cite as

Comparison of the characteristics of electric double-layer capacitors with an activated carbon powder and an activated carbon fiber

  • ICHIRO TANAHASHI
Article

Abstract

The characteristics of electric double-layer capacitors (EDLCs) with activated carbon powder (ACP), pulverized activated carbon fiber (ACF), and ACF-cloth have been compared. The BET surface areas of the ACP and ACF were estimated to be 1740 and 1970 m2 g−1, respectively. In the pore-size distribution curve of the ACP and ACF, the most dominant pore diameter was 1.8 and 1.1 nm for the ACP and ACF, respectively. Disc- and cloth-type of electrodes were fabricated using ACP and ACF. The electrical resistance of the ACF-disc and ACF-cloth electrodes was four orders of magnitudes lower than that of the ACP-disc electrodes. In accordance with the lower electrical resistance of the ACF-disc and ACF-cloth, the d.c. resistance of the EDLC with the ACF-disc and with ACF-cloth was lower than that of the EDLC with the ACP-disc. The highest specific volume capacitance of 28.3 F cm−3 (capacitance / volume of total ACF in the EDLC) was achieved with the ACF-disc. In the cyclic voltammograms of the ACF-disc, the stable electric double-layer charging and discharging behavior was observed.

Key words:

activated carbon capacitor electric double-layer pore size distribution surface area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okamura M., Hasuike H., Yamagishi M., Arai S., (2001) Electrochemistry 69: 414Google Scholar
  2. 2.
    Asakura R., Kondo T., Morita M., Hatori H., Yamada Y., (2004) TANSO No. 215: 231Google Scholar
  3. 3.
    Nagasawa H., Shudo A., Miura K., (2000) J. Electrochem. Soc. 147: 38CrossRefGoogle Scholar
  4. 4.
    Choi Y.O., Yang K.S., Kim J.H., (2001) Electrochemistry 69: 837Google Scholar
  5. 5.
    Shiraishi S., Kurihara H., Oya A., (2001) Electrochemistry 69: 440Google Scholar
  6. 6.
    Hwang S.R., Teng H., (2002) J. Electrochem. Soc. 149: A591CrossRefGoogle Scholar
  7. 7.
    Mayer S.T., Pekala R.W., Kaschmitter J.L., (1993) J. Electrochem. Soc. 140: 446CrossRefGoogle Scholar
  8. 8.
    Endo M., Maeda T., Takeda T., Kim Y.J., Koshiba K., Hara H., Dresselhaus M.S., (2001) J. Electrochem. Soc. 148: A910CrossRefGoogle Scholar
  9. 9.
    Tanahashi I., Yoshida A., Nishino A., (1988) Denki Kagaku (Electrochemistry) 56: 892Google Scholar
  10. 10.
    Tanahashi I., Yoshida A., Nishino A., (1990) J. Electrochem. Soc. 137: 3052CrossRefGoogle Scholar
  11. 11.
    Tanahashi I., Yoshida A., Nishino A., (1991) Carbon 29: 1033CrossRefGoogle Scholar
  12. 12.
    Tanahashi I., Yoshida A., Nishino A., (1991) J. Appl. Electrochem. 21: 28CrossRefGoogle Scholar
  13. 13.
    Dollimore D., Heal G.R., (1964) J. Appl. Chem. Soc. 14: 109CrossRefGoogle Scholar
  14. 14.
    Sing K.S.W., (1985) Pure Appl. Chem. 57: 603CrossRefGoogle Scholar
  15. 15.
    Gagnon E.G., (1975) J. Electrochem. Soc. 122: 521CrossRefGoogle Scholar
  16. 16.
    Koresh J., Soffer A., (1977) J. Electrochem. Soc. 124: 1379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Applied ChemistryFaculty of Engineering, Osaka Institute of TechnologyAsahi-ku, OsakaJapan

Personalised recommendations