Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 10, pp 1005–1013 | Cite as

Capacity Fade Analysis of a Battery/Super Capacitor Hybrid and a Battery under Pulse Loads – Full Cell Studies

  • Rajeswari Chandrasekaran
  • Godfrey Sikha
  • Branko N. Popov
Article

Abstract

A detailed analysis of the capacity fade of a battery/supercapacitor hybrid and a battery alone has been carried out at 55 °C by discharging them at three different pulse rates. The applied peak current amplitudes were 5C (7 A), 3C (4.2 A), and 1C (1.4 A), respectively. The results indicated that for hybrids the pulse discharge run time was extended for all pulse discharge rates. The ohmic resistances estimated as a function of the pulse discharge rates were smaller for hybrids when compared with those for batteries. The variation of the ohmic resistance under pulse discharge with cycling, irrespective of the pulse discharge rate was smaller for hybrids than that for the batteries. The batteries and hybrids cycled at the lowest pulse discharge rate (high pulse discharge time) have larger capacity fade when compared with the capacity fade of the batteries and the hybrids discharged using higher discharge rates (low pulse discharge time). Impedance, cyclic voltammogram, and the rate capability studies were carried out on batteries cycled alone and on batteries cycled as part of the hybrid. The battery showed larger increase in the interfacial impedance with cycling when compared with the hybrid system.

Key words

capacity fade interfacial impedance lithium ion battery/supercapacitor hybrid pulse discharge amplitude rate capability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Dougal, S. Liu and R.E. White, IEEE Trans. Comp. 25(1) (2002).Google Scholar
  2. 2.
    Sikha, G., Popov, B.N. 2004J. Power Sources134130CrossRefGoogle Scholar
  3. 3.
    Chu, A., Braatz, P. 2002J. Power Sources112236CrossRefGoogle Scholar
  4. 4.
    Holland, C.E., Weidner, J.W., Dougal, R.A., White, R.E. 2002J. Power Sources10932CrossRefGoogle Scholar
  5. 5.
    Ramadass, P., Haran, B.S., White, R.E., Popov, B.N. 2002J. Power Sources112606CrossRefGoogle Scholar
  6. 6.
    Ramadass, P., Haran, B.S., White, R.E., Popov, B.N. 2002J. Power Sources112614CrossRefGoogle Scholar
  7. 7.
    Sikha, G., Ramadass, P., Haran, B.S., White, R.E., Popov, B.N. 2003J. Power Sources12267CrossRefGoogle Scholar
  8. 8.
    Sikha, G., Popov, B.N., White, R.E. 2004J. Electrochem. Soc.151A1104CrossRefGoogle Scholar
  9. 9.
    Ramadass, P., Durairajan, A., Haran, B.S., White, R.E., Popov, B. 2002J. Electrochem. Soc.149A54CrossRefGoogle Scholar
  10. 10.
    Ning, G., Haran, B.S., Popov, B.N. 2003J. Power Sources117160CrossRefGoogle Scholar
  11. 11.
    Arora, P., White, R.E., Doyle, M. 1998J. Electrochem. Soc.1453647Google Scholar
  12. 12.
    Ramasamy, R.P., White, R.E., Popov, Branko N. 2005J. Power Sources141298CrossRefGoogle Scholar
  13. 13.
    Johnson, B.A., White, R.E. 1998J. Power Sources7048CrossRefGoogle Scholar
  14. 14.
    Conway, B.E. 1999Electrochemical Supercapacitors: Scientific Fundamentals and Technological ApplicationsKluwer PlenumNew YorkGoogle Scholar
  15. 15.
    Li, J., Murphy, E., Winnick, J., Kohl, P.A. 2001J. Power Sources102302CrossRefGoogle Scholar
  16. 16.
    Nagasubramanian, G., Jungst, R.G., Doughty, D.H. 1999J. Power Sources83193CrossRefGoogle Scholar
  17. 17.
    Zhang, D., Haran, B.S., Durairajan, A., White, R.E., Podrazhansky, Y., Popov, B.N. 2000J. Power Sources91122CrossRefGoogle Scholar
  18. 18.
    Aurbach, D., Markovsky, B., Rodkin, A., Cojocaru, M., Levi, E., Kim, H.-J. 2002Electrochim. Acta471899CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Rajeswari Chandrasekaran
    • 1
  • Godfrey Sikha
    • 1
  • Branko N. Popov
    • 1
  1. 1.Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations