Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 9, pp 865–870 | Cite as

Effect of water vapor on proton conduction of cesium dihydrogen phosphateand application to intermediate temperature fuel cells

  • Junichiro Otomo
  • Takanori Tamaki
  • Satoru Nishida
  • Shuqiang Wang
  • Masaru Ogura
  • Takeshi Kobayashi
  • Ching-ju Wen
  • Hidetoshi Nagamoto
  • Hiroshi Takahashi
Article

Abstract

The proton conduction and superionic phase transition of cesium dihydrogen phosphate, CsH2PO4 (CDP), were investigated under various humid conditions to evaluate the applicability of a CsH2PO4 solid electrolyte to an intermediate temperature fuel cell operating between 230 °C and 300 °C. The phase stability, superionic phase transition, and reversibility of dehydration of CsH2PO4 were evaluated under different ambient water vapor concentrations, from 0 to 90 mol%, through the measurements of conductivity. The dependence of conductivity on the water vapor concentration and the demonstrated reversibility of dehydration clearly showed the range in which CsH2PO4 is applicable to the intermediate temperature fuel cell. Additionally, we evaluated the protonic transport number of CsH2PO4, which was almost unity, and demonstrated fuel cell operation at 250 °C using a single cell fabricated with the CsH2PO4 electrolyte.

Key words

cesium dihydrogen phosphate inorganic solid electrolyte intermediate temperature fuel cell proton conductor superionic phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baranov, A.I., Khiznichenko, V.P., Sandler, V.A., Shuvalov, L.A 1988Ferroelectrics81183Google Scholar
  2. 2.
    Baranov, A.I., Khiznichenko, V.P., Shuvalov, L.A 1989Ferroelectrics100135Google Scholar
  3. 3.
    Baranov, A.I., Merinov, B.V., Tregubchenko, A.V., Khiznichenko, V.P., Shuvalov, L.A., Schagina, N.M. 1989Solid State Ionics36279Google Scholar
  4. 4.
    Lee, K.-S 1996J. Phys. Chem. Solids57333CrossRefGoogle Scholar
  5. 5.
    Ortiz, E., Vargas, R.A., Mellander, B.-E 1999J. Chem. Phys.1104847CrossRefGoogle Scholar
  6. 6.
    Boysen, D.A., Haile, S.M., Liu, H., Secco, R.A 2003Chem. Mater.15727CrossRefGoogle Scholar
  7. 7.
    Otomo, J., Minagawa, N., Wen, C., Eguchi, K., Takahashi, H. 2003Solid State Ionics156357CrossRefGoogle Scholar
  8. 8.
    Bronowska, W 2001J. Chem. Phys.114611CrossRefGoogle Scholar
  9. 9.
    Boysen, D.A., Uda, T., Chisholm, C.R.I., Haile, S.M 2004Science30368CrossRefPubMedGoogle Scholar
  10. 10.
    Rapoport, E., Clark, J.B., Richter, P.W. 1978J. Solid State Chem.24423CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Junichiro Otomo
    • 1
  • Takanori Tamaki
    • 2
  • Satoru Nishida
    • 1
  • Shuqiang Wang
    • 1
  • Masaru Ogura
    • 2
  • Takeshi Kobayashi
    • 2
  • Ching-ju Wen
    • 3
  • Hidetoshi Nagamoto
    • 1
  • Hiroshi Takahashi
    • 1
  1. 1.Department of Environmental Chemical Engineering, Faculty of EngineeringKogakuin UniversityHachioji-city, TokyoJapan
  2. 2.Department of Chemical System EngineeringSchool of Engineering, The University of TokyoTokyoJapan
  3. 3.Department of Energy SciencesInterdisciplinary Graduate School of Science and Engineering, Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations