Journal of Applied Electrochemistry

, Volume 35, Issue 7–8, pp 831–836 | Cite as

Photodegradation of dyes in aqueous solutions catalyzed by highly efficient nanocrystalline titania films

  • P. Bouras
  • P. Lianos


Thin nanocrystalline titanium dioxide films were deposited on glass rings by the sol-gel method in the presence of ethanol, acetic acid and the non-ionic surfactant Triton X-100. Nanocrystallites are formed due to surfactant self-organization that acts as a template. These films have high active surface area and are very efficient for the photodegradation of dyes in aqueous solutions. In addition, the catalyst can be easily recovered and can be repeatedly used without loss of efficiency. Three dyes were used: Basic Blue 41, Acid Orange 7, and Crystal Violet. Decoloration of solutions of Basic Blue is much faster than those of the other two dyes. A very low load of catalyst, i.e. 120 mg l−1, is capable of bleaching dilute solutions in only a few hours by shining black light of 0.7 mW cm−2. An inexpensive and simple reactor of cylindrical symmetry is described which employs a 4 W black-light tube as light source.

Key words

black-light reactor photodegradation titania films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mehrvar, M., Anderson, W.A., Moo Young, M. 2000Adv. Env. Res6411Google Scholar
  2. 2.
    Lin, H.F., Valsaraj, K.T. 2003J. Hazard. MatB99203Google Scholar
  3. 3.
    Subramanian, V., Kamat, P.V., Wolf, E.E. 2003Ind. Eng. Chem. Res422131Google Scholar
  4. 4.
    Balasubramanian, G., Dionysiou, D.D., Suidan, M.T., Baudin, I., Laine, J.M. 2004Appl. Catal. B: Environ4773CrossRefGoogle Scholar
  5. 5.
    Grzechulska, J., Waldemar Morawski, A. 2003Appl. Catal. B: Environ46415CrossRefGoogle Scholar
  6. 6.
    Dhananjeyan, M.R., Mielczarski, E., Thampi, K.R., Buffat, Ph., Bensimon, M., Kulik, A., Mielczarski, J., Kiwi, J. 2001J. Phys. Chem. B10512046CrossRefGoogle Scholar
  7. 7.
    Bouras, P., Stathatos, E., Lianos, P., Tsakiroglou, C. 2004Appl. Catal. B: Environ51275CrossRefGoogle Scholar
  8. 8.
    Stathatos, E., Lianos, P., Del Monte, F., Levy, D., Tsiourvas, D. 1997Langmuir134295Google Scholar
  9. 9.
    Dag, O., Soten, I., Celic, O., Polarz, S., Coombs, N., Ozin, G.A. 2003Adv. Funct. Mater1330CrossRefGoogle Scholar
  10. 10.
    Stathatos, E., Lianos, P., Falaras, P. 2001Progr. Colloid Polym. Sci11896Google Scholar
  11. 11.
    Ivanda, M., Music, S., Popovic, S., Gotic, M. 1999J. Mol. Struct480–481645Google Scholar
  12. 12.
    Angelidis, T.N., Koutlemani, M., Poulios, I. 1998Appl. Catal. B: Environ16347CrossRefGoogle Scholar
  13. 13.
    Konstantinou, I.K., Albanis, T.A. 2004Appl. Catal. B: Environ491CrossRefGoogle Scholar
  14. 14.
    Stylidi, M., Kontrides, D.I., Verykios, X.E. 2003Appl. Catal. B: Environ40271CrossRefGoogle Scholar
  15. 15.
    Bauer, C., Jacques, P., Kalt, A. 2001J. Photochem. Photobiol. A Chem14087CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Engineering Science DepartmentUniversity of PatrasGreece

Personalised recommendations