Journal of Applied Electrochemistry

, Volume 35, Issue 7–8, pp 699–708 | Cite as

Development of an optical fiber monolith reactor for photocatalytic wastewater Treatment

  • Hongfei Lin
  • Kalliat T. Valsaraj


A photocatalytic reactor, which employs a ceramic multi-channel monolith as a support for TiO2 and bare quartz fibers inserted inside the monolithic channels as both a light-transmitting conductor and a support for TiO2, was constructed and tested for water treatment by investigating the photocatalytic degradation of o-dichlorobenzene (DCB) and phenanthrene (PHE). This configuration provides a higher surface area for catalyst coating per unit reactor volume compared to the continuous annular reactor (CAR) and optical fiber reactor (OFR). The light distribution profile inside each cell of the monolith is analyzed. Exponential decay of light was observed in propagation along the quartz fiber core and penetration into the TiO2 film. Optimum thickness of TiO2 layer on the optical fiber was found to be ≈ 0.4 μm in this study. The kinetics of DCB and PHE degradation were pseudo-first order. The effect of the water flow velocity was investigated and showed that the operation was in the mass transfer control regime. Overall rate constants were extracted from the experimental data; and these were then used to calculate the apparent quantum efficiency of photocatalytic degradation. Greater apparent quantum efficiency was observed for the optical fiber monolithic reactor (OFMR) compared with that of the CAR.

Key words

dichlorobenzene optical fiber monolith reactor phenanthrene photocatalysis TiO2 film water treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mills, A., Davies, R.H., Worley, D. 1993Chem. Soc. Rev22417CrossRefGoogle Scholar
  2. 2.
    Legrini, O., Oliveros, E., Braun, A.M. 1993Chem. Rev93671CrossRefGoogle Scholar
  3. 3.
    Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W. 1995Chem. Rev9569CrossRefGoogle Scholar
  4. 4.
    Mills, A, LeHunte, S.J. 1997J. Photochem. Photobiol. A1081Google Scholar
  5. 5.
    Herrmann, J.M. 1999Catal. Today53115CrossRefGoogle Scholar
  6. 6.
    Alfano, O.M., Bahnemann, D., Cassano, A.E., Dillert, R., Goslich, R. 2000Catal. Today53199Google Scholar
  7. 7.
    Ray, A.K. 1999Chem. Eng. Sci543113Google Scholar
  8. 8.
    Al-Eekabi, H., Anderson, M.A., Kikkawa, H., Edwards, M., Hill, C.G. 1991J. Catal127167Google Scholar
  9. 9.
    Naskar, S., Pillay, S.A., Chanda, M. 1998J. Photochem. Photobiol. A113257Google Scholar
  10. 10.
    Ray, A.K., Beenackers, A.A.C.M. 1998AIChE J44477CrossRefGoogle Scholar
  11. 11.
    Bideau, M., Claudel, B., Dubien, C., Faure, L., Kazousan, H. 1995J.␣Photochem. Photobiol. A91137Google Scholar
  12. 12.
    Zhang, Y., Crittenden, J.C., Hand, D.W., Perram, D.L. 1994Environ. Sci. Technol28435Google Scholar
  13. 13.
    Chester, G., Anderson, M., Read, H. 1993J. Photochem. Photobiol. A71291Google Scholar
  14. 14.
    Al-Ekabi, H., Safazadey-Amiri, A., Sifton, W., Story, J. 1991Int. J.␣Environ. Pollut1125Google Scholar
  15. 15.
    Marinangeli, R.E., Ollis, D.F. 1977AIChE J23415CrossRefGoogle Scholar
  16. 16.
    Marinangeli, R.E., Ollis, D.F. 1980AIChE J261000CrossRefGoogle Scholar
  17. 17.
    Marinangeli, R.E., Ollis, D.F. 1982AIChE J28945CrossRefGoogle Scholar
  18. 18.
    Hofstadler, K., Bauer, R., Novalic, S., Heisler, G. 1994Environ. Sci. Technol28670CrossRefGoogle Scholar
  19. 19.
    Peill, N.J., Hoffmann, M.R. 1995Environ. Sci. Technol292974Google Scholar
  20. 20.
    Peill, N.J., Hoffmann, M.R. 1996Environ. Sci. Technol302806CrossRefGoogle Scholar
  21. 21.
    Peill, N.J., Hoffmann, M.R. 1998Environ. Sci. Technol32398CrossRefGoogle Scholar
  22. 22.
    Choi, W., Ko, J.Y., Park, H., Chung, J.S. 2001Appl. Catal. B31209Google Scholar
  23. 23.
    Wang, W., Ku, Y. 2003J. Photochem. Photobiol. A15947Google Scholar
  24. 24.
    Moore, W.R., Richmond, R.P., Vaneman, G.L., Dou, D. 1999Evaluation of High Cell Density Substrates for Advanced Catalytic Converter Emissions ControlSAE InternationalWarrendale, PA1999-01-3630Google Scholar
  25. 25.
    Sauer, M.L., Ollis, D.F. 1994J. Catal14981CrossRefGoogle Scholar
  26. 26.
    Hossain, M.M., Raupp, G.B. 1999AIChE J451309CrossRefGoogle Scholar
  27. 27.
    Raupp, G.B., Alexiadis, A., Hossain, M.M., Changrani, R. 2001Catal. Today6941CrossRefGoogle Scholar
  28. 28.
    Son, G.S., Yun, S.W., Ko, S.H., Song, J.W., Lee, K.Y. 2003J. Adv. Oxid. Technol680Google Scholar
  29. 29.
    Lin, H.F., Valsaraj, K.T. 2002Sep. Purif. Technol2887CrossRefGoogle Scholar
  30. 30.
    Lin, H.F., Valsaraj, K.T. 2003J. Hazard. Mater. B99203CrossRefGoogle Scholar
  31. 31.
    Balakotiah, V., Gupta, N., West, D.H. 2000Chem. Eng. Sci555367Google Scholar
  32. 32.
    Turchi, C.F., Ollis, D.F. 1988J. Phys. Chem926852CrossRefGoogle Scholar
  33. 33.
    Chen, D., Li, F., Ray, A.K. 2000AIChE J461034Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Gordon A. and Mary Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations