Skip to main content
Log in

Development of an optical fiber monolith reactor for photocatalytic wastewater Treatment

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A photocatalytic reactor, which employs a ceramic multi-channel monolith as a support for TiO2 and bare quartz fibers inserted inside the monolithic channels as both a light-transmitting conductor and a support for TiO2, was constructed and tested for water treatment by investigating the photocatalytic degradation of o-dichlorobenzene (DCB) and phenanthrene (PHE). This configuration provides a higher surface area for catalyst coating per unit reactor volume compared to the continuous annular reactor (CAR) and optical fiber reactor (OFR). The light distribution profile inside each cell of the monolith is analyzed. Exponential decay of light was observed in propagation along the quartz fiber core and penetration into the TiO2 film. Optimum thickness of TiO2 layer on the optical fiber was found to be ≈ 0.4 μm in this study. The kinetics of DCB and PHE degradation were pseudo-first order. The effect of the water flow velocity was investigated and showed that the operation was in the mass transfer control regime. Overall rate constants were extracted from the experimental data; and these were then used to calculate the apparent quantum efficiency of photocatalytic degradation. Greater apparent quantum efficiency was observed for the optical fiber monolithic reactor (OFMR) compared with that of the CAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Mills R.H. Davies D. Worley (1993) Chem. Soc. Rev 22 417 Occurrence Handle10.1039/cs9932200417 Occurrence Handle1:CAS:528:DyaK2cXhslalsb4%3D

    Article  CAS  Google Scholar 

  2. O. Legrini E. Oliveros A.M. Braun (1993) Chem. Rev 93 671 Occurrence Handle10.1021/cr00018a003 Occurrence Handle1:CAS:528:DyaK3sXhsFektLc%3D

    Article  CAS  Google Scholar 

  3. M.R. Hoffmann S.T. Martin W.Y. Choi D.W. Bahnemann (1995) Chem. Rev 95 69 Occurrence Handle10.1021/cr00033a004 Occurrence Handle1:CAS:528:DyaK2MXjtF2qur4%3D

    Article  CAS  Google Scholar 

  4. A Mills S.J. LeHunte (1997) J. Photochem. Photobiol. A 108 1 Occurrence Handle1:CAS:528:DyaK2sXlsFGksLo%3D

    CAS  Google Scholar 

  5. J.M. Herrmann (1999) Catal. Today 53 115 Occurrence Handle10.1016/S0920-5861(99)00107-8 Occurrence Handle1:CAS:528:DyaK1MXmsFajsrs%3D

    Article  CAS  Google Scholar 

  6. O.M. Alfano D. Bahnemann A.E. Cassano R. Dillert R. Goslich (2000) Catal. Today 53 199

    Google Scholar 

  7. A.K. Ray (1999) Chem. Eng. Sci 54 3113 Occurrence Handle1:CAS:528:DyaK1MXksVSlt78%3D

    CAS  Google Scholar 

  8. H. Al-Eekabi M.A. Anderson H. Kikkawa M. Edwards C.G. Hill (1991) J. Catal 127 167

    Google Scholar 

  9. S. Naskar S.A. Pillay M. Chanda (1998) J. Photochem. Photobiol. A 113 257 Occurrence Handle1:CAS:528:DyaK1cXhs1Ghtbk%3D

    CAS  Google Scholar 

  10. A.K. Ray A.A.C.M. Beenackers (1998) AIChE J 44 IssueID2 477 Occurrence Handle10.1002/aic.690440224 Occurrence Handle1:CAS:528:DyaK1cXhsVequr8%3D

    Article  CAS  Google Scholar 

  11. M. Bideau B. Claudel C. Dubien L. Faure H. Kazousan (1995) J.␣Photochem. Photobiol. A 91 137 Occurrence Handle1:CAS:528:DyaK2MXps1GitLo%3D

    CAS  Google Scholar 

  12. Y. Zhang J.C. Crittenden D.W. Hand D.L. Perram (1994) Environ. Sci. Technol 28 435 Occurrence Handle1:CAS:528:DyaK2cXhtFKgt78%3D

    CAS  Google Scholar 

  13. G. Chester M. Anderson H. Read (1993) J. Photochem. Photobiol. A 71 291 Occurrence Handle1:CAS:528:DyaK3sXksFGhtL8%3D

    CAS  Google Scholar 

  14. H. Al-Ekabi A. Safazadey-Amiri W. Sifton J. Story (1991) Int. J.␣Environ. Pollut 1 125 Occurrence Handle1:CAS:528:DyaK2cXhsVemtLg%3D

    CAS  Google Scholar 

  15. R.E. Marinangeli D.F. Ollis (1977) AIChE J 23 415 Occurrence Handle10.1002/aic.690230403 Occurrence Handle1:CAS:528:DyaE2sXlt1ehtrw%3D

    Article  CAS  Google Scholar 

  16. R.E. Marinangeli D.F. Ollis (1980) AIChE J 26 1000 Occurrence Handle10.1002/aic.690260615 Occurrence Handle1:CAS:528:DyaL3MXmsl2rtw%3D%3D

    Article  CAS  Google Scholar 

  17. R.E. Marinangeli D.F. Ollis (1982) AIChE J 28 945 Occurrence Handle10.1002/aic.690280609 Occurrence Handle1:CAS:528:DyaL3sXjslKhsg%3D%3D

    Article  CAS  Google Scholar 

  18. K. Hofstadler R. Bauer S. Novalic G. Heisler (1994) Environ. Sci. Technol 28 670 Occurrence Handle10.1021/es00053a021 Occurrence Handle1:CAS:528:DyaK2cXhslagtLo%3D

    Article  CAS  Google Scholar 

  19. N.J. Peill M.R. Hoffmann (1995) Environ. Sci. Technol 29 2974 Occurrence Handle1:CAS:528:DyaK2MXovFSlurw%3D

    CAS  Google Scholar 

  20. N.J. Peill M.R. Hoffmann (1996) Environ. Sci. Technol 30 2806 Occurrence Handle10.1021/es960047d Occurrence Handle1:CAS:528:DyaK28XksFGrtr4%3D

    Article  CAS  Google Scholar 

  21. N.J. Peill M.R. Hoffmann (1998) Environ. Sci. Technol 32 398 Occurrence Handle10.1021/es960874e Occurrence Handle1:CAS:528:DyaK1cXjtVeq

    Article  CAS  Google Scholar 

  22. W. Choi J.Y. Ko H. Park J.S. Chung (2001) Appl. Catal. B 31 209 Occurrence Handle1:CAS:528:DC%2BD3MXjtlWjsLw%3D

    CAS  Google Scholar 

  23. W. Wang Y. Ku (2003) J. Photochem. Photobiol. A 159 47 Occurrence Handle1:CAS:528:DC%2BD3sXjvVamtLo%3D

    CAS  Google Scholar 

  24. W.R. Moore R.P. Richmond G.L. Vaneman D. Dou (1999) Evaluation of High Cell Density Substrates for Advanced Catalytic Converter Emissions Control SAE International Warrendale, PA

    Google Scholar 

  25. M.L. Sauer D.F. Ollis (1994) J. Catal 149 81 Occurrence Handle10.1006/jcat.1994.1274 Occurrence Handle1:CAS:528:DyaK2cXmtFWrtrk%3D

    Article  CAS  Google Scholar 

  26. M.M. Hossain G.B. Raupp (1999) AIChE J 45 1309 Occurrence Handle10.1002/aic.690450615 Occurrence Handle1:CAS:528:DyaK1MXjvF2mtLc%3D

    Article  CAS  Google Scholar 

  27. G.B. Raupp A. Alexiadis M.M. Hossain R. Changrani (2001) Catal. Today 69 41 Occurrence Handle10.1016/S0920-5861(01)00353-4 Occurrence Handle1:CAS:528:DC%2BD3MXntVyltLg%3D

    Article  CAS  Google Scholar 

  28. G.S. Son S.W. Yun S.H. Ko J.W. Song K.Y. Lee (2003) J. Adv. Oxid. Technol 6 80 Occurrence Handle1:CAS:528:DC%2BD3sXhsVGiuro%3D

    CAS  Google Scholar 

  29. H.F. Lin K.T. Valsaraj (2002) Sep. Purif. Technol 28 87 Occurrence Handle10.1016/S1383-5866(02)00017-5 Occurrence Handle1:CAS:528:DC%2BD38XktlKmt7Y%3D

    Article  CAS  Google Scholar 

  30. H.F. Lin K.T. Valsaraj (2003) J. Hazard. Mater. B 99 203 Occurrence Handle10.1016/S0304-3894(03)00060-8 Occurrence Handle1:CAS:528:DC%2BD3sXjt1els7k%3D

    Article  CAS  Google Scholar 

  31. V. Balakotiah N. Gupta D.H. West (2000) Chem. Eng. Sci 55 5367

    Google Scholar 

  32. C.F. Turchi D.F. Ollis (1988) J. Phys. Chem 92 6852 Occurrence Handle10.1021/j100334a070 Occurrence Handle1:CAS:528:DyaL1MXhsFOqsw%3D%3D

    Article  CAS  Google Scholar 

  33. D. Chen F. Li A.K. Ray (2000) AIChE J 46 1034 Occurrence Handle1:CAS:528:DC%2BD3cXjs1yks7k%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalliat T. Valsaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Valsaraj, K.T. Development of an optical fiber monolith reactor for photocatalytic wastewater Treatment. J Appl Electrochem 35, 699–708 (2005). https://doi.org/10.1007/s10800-005-1364-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-1364-x

Key words

Navigation