Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 5, pp 507–512 | Cite as

Li–H2 cells with molten alkali chlorides electrolyte

  • Hiroshi Ito
  • Yasuo Hasegawa
  • Yasuhiko Ito
Article

Abstract

Li–H2 thermally regenerative fuel cells were studied using molten alkali chlorides as the electrolyte at relatively lower temperature. The saturation solubility of LiH in three different alkali chloride eutectic melts (LiCl–KCl, LiCl–CsCl, and LiCl–KCl–CsCl) was determined based on equilibrium potential measurements for the hydrogen electrode. Both a Ni membrane electrode and porous Ni electrode were evaluated as the cathode of the cell. In addition, a single cell of a Li–H2 fuel cell with a Ni membrane for the anode was constructed, and the electromotive force (emf) was measured. When the Ni membrane electrode performed as an anode with molten salt electrolyte saturated with LiH, the measured emf was similar to previously reported emf for other types of molten salt electrolyte. In conclusion, certain types of molten alkali chlorides can be used as the electrolyte of a thermally regenerative fuel cell at a relatively lower operating temperature at least above 598 K.

Keywords

electromotive force lithium hydride molten alkali chlorides nickel membrane thermally regenerative fuel cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts, R. 1958J. Electrochem. Soc.105428Google Scholar
  2. 2.
    Bethne, A.J. 1960J. Electrochem. Soc.107937Google Scholar
  3. 3.
    Ciarlariello, T.A., Werner, R.C. 1961Chem. Eng. Prog.5742Google Scholar
  4. 4.
    Snoke, D.R., Fuscoe, J.M. 1961SAE J.6968Google Scholar
  5. 5.
    Ito, H., Hasegawa, Y. 2000J. Electrochem. Soc.147289Google Scholar
  6. 6.
    Ito, H., Hasegawa, Y., Ito, Y. 2001J. Electrochem. Soc.148E148Google Scholar
  7. 7.
    Ito, H., Hasegawa, Y., Ito, Y. 2001J. Chem. Eng. Data461203Google Scholar
  8. 8.
    Ito, H., Hasegawa, Y., Ito, Y. 2002J. Electrochem. Soc.149E273Google Scholar
  9. 9.
    Ito, H., Hasegawa, Y., Ito, Y. 2003J. Electrochem. Soc.150E244Google Scholar
  10. 10.
    Artsdalen, E.R., Yaffe, I.S. 1955J. Phys. Chem.59118Google Scholar
  11. 11.
    Matsumura, Y., Tanaka, Y., Mizuno, M. 1973Trans. Jpn. Welding Soc.4126Google Scholar
  12. 12.
    Nissen, D.A., Carlsten, R.W. 1973J. Chem. Eng. Data1875Google Scholar
  13. 13.
    Janz, G.J. 1967‘Molten Salt Handbook’Academic PressNew YorkGoogle Scholar
  14. 14.
    E.J. Cairns and K. Steunenberg, in C.A. Rouse (Ed.), ‘Progress in High Temperature Physics and Chemistry’, vol. 5, Chap. 2 (Pergamon Press, Oxford, 1972)Google Scholar
  15. 15.
    H.L. Chum and R.A. Osteryoung, ‘Review of Thermally Regenerative Electrochemical Systems’, vol. 2, SERI-TR-332-416 (Solar Energy Research Institute, Golden ,CO, 1980)Google Scholar
  16. 16.
    E.J. Cairns, C.E. Crouthamel, A.K. Fisher, M.S. Foster, J.C. Hesson, C.E. Johnson, H. Simotake and A.D. Tevebaugh, ‘Galvanic cells with fused salt electrolytes’ ‘Chemical Engineering Division’, Report No. ANL-7316 (Argonne National Laboratory, 1967)Google Scholar
  17. 17.
    Johnson, C.E., Heinrich, R.R., Crouthamel, C.E. 1966J. Phys. Chem.70242Google Scholar
  18. 18.
    Luedecke, C.M., Deblein, G., Huggins, R.A. 1985J. Electrochem. Soc.13252Google Scholar
  19. 19.
    Lüdecke, C.M., Deublein, G., Huggins, R.A. 1987Int. J. Hydrogen Energy1281Google Scholar
  20. 20.
    Liaw, B.Y., Huggins, R.A. 1989Z. Physik. Chem. N. F.1641533Google Scholar
  21. 21.
    Liaw, B.Y. 1993Hydride-containing molten salts and their technology implicationsSequeira, C.A.C.Picard, G.S. eds. Electrochemical Technology of Molten Salt 1-2Trans Tech PublicationsSwitzerland345357Google Scholar
  22. 22.
    R. Roy, J.S. Armijo and E.E. Gerrels, ‘Proceedings of the 23rd IECEC’, vol. 2 (Denver, CO, 1988) pp. 287Google Scholar
  23. 23.
    R. Roy, S.A. Salamah, J. Maldonado and R.S. Narkiewicz, ‘A.I.P. Conference Proceedings’, vol. 271, Part 2 (Albuquerque, NM, 1992) pp. 913Google Scholar
  24. 24.
    Adams, P.F., Down, M.G., Hubberstey, P., Pulham, R.J. 1975J.Less-Common Metals42325Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Energy Technology Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  2. 2.Department of Environmental Systems Science, Faculty of EngineeringDoshisha UniversityKyotanabe-shiJapan

Personalised recommendations