Journal of Applied Electrochemistry

, Volume 35, Issue 5, pp 487–498 | Cite as

Determination of heterogeneities in a scraped surface heat exchanger using electrochemical sensors



An experimental investigation of a scaled-down model of an industrial exchanger, using an electrochemical technique, was undertaken in order to show the presence of hydrodynamic heterogeneities at low axial Reynolds number. Heterogeneities were revealed in the bowls with respect to the generalised Taylor number as the result of the perturbations added to the flow by blade rotation at both ends of the exchanger. Shear heterogeneities associated to flow visualisations were correlated to temperature heterogeneities observed in the bowls. Shear fluctuations were revealed in the scraped part describing two distinctive zones at low rotation speed caused by varying viscosity in the flow field. A complex spiral flow was observed by flow visualisation characterising a mass transfer evolution comprised between these two distinctive zones at low Taylor number.


electrochemical technique flow visualisation scraped surface heat exchanger shear heterogeneities spiral flow wall shear rates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dumont, E., Fayolle, F., Legrand, J. 2000J. Food Eng.45195Google Scholar
  2. 2.
    Trommelen, A.M., Beek, W.J., Westelaken, H.C. 1971Chem. Eng. Sci.261987Google Scholar
  3. 3.
    Maingonnat, J.F., Corrieu, G. 1983Entropie11137Google Scholar
  4. 4.
    Härröd, M. 1986J. Food Proc. Eng.91Google Scholar
  5. 5.
    Abichandani, H., Sarma, S.C., Heldman, D.R. 1987J. Food Proc. Eng.9121Google Scholar
  6. 6.
    Leuliet, J.C., Maingonnat, J.F., Corrieu, G. 1986J. Food Eng.5153Google Scholar
  7. 7.
    Maingonnat, J.F., Leuliet, J.C., Benezech, T. 1987Revue Générale de Thermique381306307Google Scholar
  8. 8.
    M. Naimi, Ph.D. thesis, ENSEM – LEMTA, INP Lorraine (1989)Google Scholar
  9. 9.
    Härröd, M. 1990J. Food Proc. Eng.1359Google Scholar
  10. 10.
    Dumont, E., Della Valle, D., Fayolle, F., Legrand, J. 2000J. Food Proc. Eng.23207Google Scholar
  11. 11.
    Goede, R., Jong, E.J. 1993Chem. Eng. Sci.481393Google Scholar
  12. 12.
    Baccar, M., Abid, M.S. 1997Récents Progrès en Génie des Procédés11219Google Scholar
  13. 13.
    Stranzinger, M., Feigl, K., Windhab, E. 2001Chem. Eng. Sci.563347Google Scholar
  14. 14.
    Mabit, J., Loisel, C., Fayolle, F., Legrand, J. 2003J. Food Eng.57165Google Scholar
  15. 15.
    Mabit, J., Fayolle, F., Legrand, J. 2003Chem. Eng. Sci.584667Google Scholar
  16. 16.
    Dumont, E., Fayolle, F., Legrand, J. 1999Récents Progrès en Génie des Procédés13401Google Scholar
  17. 17.
    Reiss, L.P., Hanratty, T.J. 1963AIChE J.8154Google Scholar
  18. 18.
    Sobolik, V., Tihon, J., Wein, O., Wichterle, K. 1998J. Appl. Electrochem.28329Google Scholar
  19. 19.
    Legrand, J., Dumont, E., Comiti, J., Fayolle, F. 2000Electrochim. Acta451791Google Scholar
  20. 20.
    Dumont, E., Fayolle, F., Legrand, J. 2002Int. J. Heat Mass Trans.45679Google Scholar
  21. 21.
    C. Nouar, Ph.D. thesis, ENSEM – LEMTA, INP Lorraine (1986).Google Scholar
  22. 22.
    Balasubramaniam, V.M., Sastry, S.K. 1996J. Food Proc. Eng.1975Google Scholar
  23. 23.
    Wronski, S., Jastrzebski, M.S. 1990Int. J. Heat Mass Trans.331Google Scholar
  24. 24.
    Wang, W., Walton, J.H., McCarthy, K.L. 2000J. Food Proc. Eng.23403Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Francine Fayolle
    • 1
  • Jérôme Mabit
    • 1
  • Jack Legrand
    • 2
  1. 1.Département Génie des Procédés Alimentaires GEPEA – UMR 6144 CNRSEcole Nationale d’Ingénieurs des Techniques des Industries Agricoles et AlimentairesNantes Cedex 3France
  2. 2.GEPEA – UMR 6144, CNRSUniversité de Nantes CRTTSaint Nazaire CedexFrance

Personalised recommendations