Journal of Applied Electrochemistry

, Volume 35, Issue 2, pp 157–162 | Cite as

Physical and electrochemical characteristics of nanostructured nickel hydroxide powder

  • Q.S. Song
  • Y.Y. Li
  • S.L.I. Chan


Nanostructured nickel hydroxide powder has been synthesized by a chemical precipitation method with the aid of ultrasound radiation, and the physical properties of the synthesized material were characterized by scanning electron microscopy, specific surface area, X-ray diffraction and differential scanning calorimetry. It was found that nanostructured nickel hydroxide was crystalline β-Ni(OH)2 with a nanocrystalline and nanoporous surface structure. The crystallite sizes of nanostructured β-Ni(OH)2 along the c- and a-axis were 2.5 and 2.3 nm, respectively, as calculated from (001) and (100) X-ray diffraction peaks. In comparison with spherical β-Ni(OH)2 which has now been widely used as the active material for pasted nickel electrodes, nanostructured β-Ni(OH)2 possessed a smaller crystallite size, more structural defects, a larger lattice parameter of c0, a higher specific surface area and lower thermal decomposition temperature. These physical characteristics were advantageous to the improvement of electrochemical activity of the nanostructured nickel hydroxide powder. Studies indicated that the filling property and flowability of nanostructured β-Ni(OH)2, which were characterized by the measurements of tapping density and angle of repose, were inferior to those of spherical β-Ni(OH)2. Pasted nickel electrodes with a porous nickel-foam substrate were prepared using a mixture of the nanostructured and spherical Ni(OH)2 powders as the active material. Charge/discharge tests showed that the addition of an appropriate amount of nanostructured Ni(OH)2 powder to spherical Ni(OH)2 powder could enhance the specific discharge capacity and high-rate capability of the pasted nickel electrodes. This enhancement could be attributed to a lowered electrochemical reaction impedance for the nickel electrode with the addition of nanostructured Ni(OH)2 relative to the electrode without nanostructured Ni(OH)2.


chemical precipitation reaction electrochemical activity nanostructured material nickel hydroxide pasted nickel electrode structural characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ovshinsky, S.R., Fetcenko, M.A., Ross, J. 1993Science260176Google Scholar
  2. Ota, K., Mitsushima, S., Kato, S., Asano, S., Yoshitake, H., Kamiya, N. 1992J. Electrochem. Soc.139667Google Scholar
  3. Srinivasan, V., Weidner, J.W. 2000J. Electrochem. Soc.147880Google Scholar
  4. Couper, A.M., Pletcher, D., Walsh, F.C. 1990Chem. Rev.90837Google Scholar
  5. Natarajan, C., Matsumoto, H., Nogami, G. 1997J. Electrochem. Soc.144121Google Scholar
  6. Watanabe, K., Kikuoka, T., Kumagai, N. 1995J. Appl. Electrochem.25219Google Scholar
  7. I. Munehisa and A. Norikatsu, Eur. Patent No. EP 0523284 (1993).Google Scholar
  8. Watanabe, K., Koseki, M., Kumagai, N. 1996J. Power Sources5823Google Scholar
  9. Oshitani, M., Yufu, H., Takashima, K., Tsuji, S., Matsuma, Y. 1989J. Electrochem. Soc.1361590Google Scholar
  10. Yuan, A.B., Xu, N.X. 2001J. Appl. Electrochem.31245Google Scholar
  11. Wu, M.S., Huang, C.M., Wang, Y.Y., Wan, C.C. 1999Electrochim. Acta444007Google Scholar
  12. Oliva, P., Leonardi, J., Laurent, J.F., Delmas, C., Braconnier, J.J., Figlarz, M., Fievet, F., Guibert, A. 1982J. Power Sources8229Google Scholar
  13. Kamath, P.V., Subbanna, G.N. 1992J. Appl. Electrochem.22478Google Scholar
  14. Kamath, P.V., Dixit, M., Indira, L., Shukla, A.K., Kumar, V.G., Munichandraiah, N. 1994J. Electrochem. Soc.1412956Google Scholar
  15. Dixit, M., Kamath, P.V., Gopalakrishnan, J. 1999J. Electrochem. Soc.14679Google Scholar
  16. Tessier, C., Haumesser, P.H., Bernard, P., Delmas, C. 1999J. Electrochem. Soc.1462059Google Scholar
  17. Jayashree, R.S., Kamath, P.V., Subbanna, G.N. 2000J. Electrochem. Soc.1472029Google Scholar
  18. Jayashree, R.S., Kamath, P.V. 1999J. Appl. Electrochem.29449Google Scholar
  19. Jayashree, R.S., Kamath, P.V. 2001J. Power Sources93273Google Scholar
  20. Demourgues-Guerlou, L., Delmas, C. 1993J. Power Sources45281Google Scholar
  21. Song, Q.S., Tang, Z.Y., Guo, H.T., Chan, S.L.I. 2002J. Power Sources112428Google Scholar
  22. Deabate, S., Fourgeot, F., Henn, F. 2000J. Power Sources87125Google Scholar
  23. Faure, C., Delmas, C., Fouassier, M. 1991J. Power Sources35279Google Scholar
  24. Jayashree, R.S., Kamath, P.V. 2001J. Appl. Electrochem.311315Google Scholar
  25. Kamath, P.V., Vasanthacharya, N.Y. 1992J. Appl. Electrochem.22483Google Scholar
  26. Bernard, M.C., Cortes, R., Keddam, M., Takenouti, H., Bernard, P., Senyarich, S. 1996J. Power Sources63247Google Scholar
  27. Mani, B., Neufville, J.P. 1988J. Electrochem. Soc.135800Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of Chemical Engineering and TechnologyTianjin UniversityTianjinP.R. China
  2. 2.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations