International Tax and Public Finance

, Volume 14, Issue 3, pp 225–261 | Cite as

Optimal nonlinear taxes for families

  • Craig Brett


The problem faced by a taxation authority choosing a tax schedule for families is modeled as a multi-dimensional screening problem. A description of the possible constrained Pareto-efficient mechanisms is given. The implications of a standard redistributive assumption on the sign of marginal tax rates is explored. In contrast to unidimensional taxation models, the redistributive assumption does not imply that marginal tax rates are everywhere non-negative. The qualitative features of optimal tax schedules are discussed. It is concluded that taxation based solely on total family income is rarely optimal.


Asymmetric information Household decision making Multi-dimensional screening Optimal income taxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, M. (1996). Multiproduct nonlinear pricing. Econometrica, 64, 51–75.CrossRefGoogle Scholar
  2. Armstrong, M., & Rochet, J.-C. (1999). Multi–dimensional screening: a user’s guide. European Economic Review, 43, 959–979.CrossRefGoogle Scholar
  3. Basov, S. (2005). Multidimensional screening. Berlin, Springer.Google Scholar
  4. Besley, T., & Coate, S. (1995). The design of income maintenance programmes. Review of Economic Studies, 62, 187–221.CrossRefGoogle Scholar
  5. Brito, D., Hamilton, J., Slutsky, S., & Stiglitz, J. (1990). Pareto efficient tax structures. Oxford Economic Papers, 42, 61–77.Google Scholar
  6. Chambers, R. (1989). Concentrated objective functions for nonlinear taxation models. Journal of Public Economics, 39, 365–375.CrossRefGoogle Scholar
  7. Dana, J. (1993). The organization and scope of agents: regulating multiproduct industries. Journal of Economic Theory, 59, 365–375.CrossRefGoogle Scholar
  8. Dixit, A., & Seade, J. (1979). Utilitarian versus egalitarian redistributions. Economics Letters, 4, 121–124.CrossRefGoogle Scholar
  9. Guesnerie, R. (1981). On taxation and incentives: further remarks on the limits to redistribution. Discussion paper 89, University of Bonn.Google Scholar
  10. Guesnerie, R., & Seade, J. (1982). Nonlinear pricing in a finite economy. Journal of Public Economics, 17, 157–179.CrossRefGoogle Scholar
  11. Kanbur, R., Keen, M., & Tuomala, M. (1994). Optimal nonlinear income taxation for the alleviation of income poverty. European Economic Review, 38, 1613–1632.CrossRefGoogle Scholar
  12. Matthews, S. & Moore, J. (1987). Monopoly provision of quality and warranties: an exploration in the theory of multi-dimensional screening. Econometrica, 55, 441–467.CrossRefGoogle Scholar
  13. Mirrlees, J. A. (1971). An exploration in the theory of optimum income taxation. Review of Economic Studies, 38, 175–208.CrossRefGoogle Scholar
  14. Mirrlees, J. A. (1976). Optimal tax theory: a synthesis. Journal of Public Economics, 6, 327–358.CrossRefGoogle Scholar
  15. Rochet, J.-C. (1995). Ironing, sweeping and multidimensional screening. Cahier de recherche 95.11.374, GREMAQ, Unversité des Sciences Sociales, Toulouse.Google Scholar
  16. Rochet, J.-C., & Choné, P. (1998). Ironing, sweeping and multidimensional screening. Econometrica, 66, 783–826.CrossRefGoogle Scholar
  17. Röell, A. A. (1985). A note on the marginal tax rate in a finite economy. Journal of Public Economics, 28, 267–272.CrossRefGoogle Scholar
  18. Schroyen, F. (2003). Redistributive taxation and the household: the case of individual filings. Journal of Public Economics, 87, 2527–2547.CrossRefGoogle Scholar
  19. Seade, J. (1977). On the shape of optimal tax schedules. Journal of Public Economics, 7, 203–236.CrossRefGoogle Scholar
  20. Seade, J. (1979). On the optimal taxation of multidimensional consumers. Working paper 79–21, CEPREMAP.Google Scholar
  21. Seade, J. (1980). Optimal nonlinear policies for non–utilitarian motives. In D. Collard, R. Lecomber, and M. Slater (Eds.), Income distribution: the limits to redistribution (pp. 53–68). Bristol, John Wright and Sons.Google Scholar
  22. Stiglitz, J. E. (1982). Self-selection and pareto efficient taxation. Journal of Public Economics, 17, 213–240.CrossRefGoogle Scholar
  23. van Egteren, H. (1996). Regulating an externality-generating public utility: a multidimensional screening approach. European Economic Review, 40, 1773–1797.CrossRefGoogle Scholar
  24. Weymark, J. A. (1986a). Bunching properties of optimal nonlinear income taxes. Social Choice and Welfare, 3, 213–232.CrossRefGoogle Scholar
  25. Weymark, J. A. (1986b). A reduced-form optimal nonlinear income tax problem. Journal of Public Economics, 30, 199–217.CrossRefGoogle Scholar
  26. Weymark, J. A. (1987). Comparative static properties of optimal nonlinear income taxes. Econometrica, 55, 1165–1185.CrossRefGoogle Scholar
  27. Wilson, R. (1993). Nonlinear pricing. Oxford, Oxford University Press.Google Scholar

Copyright information

© Springer Science + Business Media, LCC 2006

Authors and Affiliations

  1. 1.Department of EconomicsMount Allison UniversitySackvilleCanada

Personalised recommendations