Measuring the Big Data Readiness of Developing Countries – Index Development and its Application to Africa

Abstract

The use of big data promises to drive economic growth and development and can therefore be a value-adding factor, but compared to private or public organisations, the country level is rarely investigated, and that is even more evident for developing countries. Another topic hardly ever considered in the big data research field is ‘big data readiness’, which means the level of preparation and willingness to exploit big data. We address these shortcomings in the literature and focus on the big data readiness of developing countries. Thus, the first research question is: what components are required for an index measuring big data readiness, and how can such an index be designed? We use a design science approach to develop the “Big Data Readiness Index” (BDRI), which is then applied to all African countries to answer our second research question: how do African countries perform in terms of the BDRI? Our analysis yields country rankings that show relatively high BDRI scores for coastal countries, such as South Africa, Kenya and Namibia, and for islands, such as Mauritius. Related implications for both research and policy are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    Policymaking is a complex process with several stakeholders, but this complexity is not fully reflected in the presented scenario as the policymaking itself is not in the center of interest. Instead, the focus is placed on the application and usage of the BDRI which helps getting a factual basis and monitoring tool for the actual policymaking.

References

  1. Ackbarally, N. (2002). Mauritius: A cyber-island in the making. Contemporary Review, 281(1640), 160–162.

  2. Agarwal, R., & Dhar, V. (2014). Big data, data science, and analytics: The opportunity and challenge for IS research. In Information Systems Research (Vol. 25, issue 3, pp. 443–448). https://doi.org/10.1287/isre.2014.0546 .

  3. Agarwal, R., & Lucas, H, C. (2005). The information systems identity crisis: Focusing on high-visibility and high-impact research. In MIS Quarterly: Management Information Systems (Vol. 29, issue 3, pp. 381–398). Management information systems research center. https://doi.org/10.2307/25148689 .

  4. Akerkar, R. (2013). Big data computing. In Big Data Computing. https://doi.org/10.1201/b16014 .

  5. Akinnagbe, A., Peiris, K. D. A., & Akinloye, O. (2018). Prospects of big data analytics in Africa healthcare system. Global Journal of Health Science, 10(6), 114. https://doi.org/10.5539/gjhs.v10n6p114 .

    Article  Google Scholar 

  6. Albrecht, J, P. (2017). How the GDPR will change the world. European Data Protection Law Review. https://doi.org/10.21552/edpl/2016/3/4 .

  7. Ali, R, H, R, M., Mohamad, R., & Sudin, S. (2016). A proposed framework of big data readiness in public sectors. AIP Conference Proceedings, 1761. https://doi.org/10.1063/1.4960929 .

  8. Amankwah-Amoah. (2016). Emerging economies, emerging challenges: Mobilising and capturing value from big data. Technological Forecasting and Social Change, 110, 167–174. https://doi.org/10.1016/j.techfore.2015.10.022 .

    Article  Google Scholar 

  9. Amegashie, J. A. (2006). The economics of subsidies. Crossroads, 6(2), 7–15.

    Google Scholar 

  10. Andrews, L. (2013). I know who you are and I saw what you did: Social networks and the death of privacy. Simon and Schuster.

  11. Baller, S., Dutta, S., & Lanvin, B. (2016). The Global Information Technology Report 2016. http://www3.weforum.org/docs/GITR2016/GITR_2016_full report_final.Pdf.

  12. Baskerville, R., Baiyere, A., Gregor, S., Hevner, A., & Rossi, M. (2018). Design science research contributions: Finding a balance between artifact and theory. Journal of the Association for Information Systems, 19(5), 358–376. https://doi.org/10.17705/1jais.00495 .

    Article  Google Scholar 

  13. Benfeldt, O., Persson, J. S., & Madsen, S. (2020). Data governance as a collective action problem. Information Systems Frontiers, 22(2), 299–313. https://doi.org/10.1007/s10796-019-09923-z .

    Article  Google Scholar 

  14. Bifet, A. (2013). Mining big data in real time. Informatica (Slovenia), 37(1), 15–20.

    Google Scholar 

  15. Bollier, D., & Firestone, C. M. (2010). The promise and peril of big data (pp. 1-66). Washington, DC: Aspen Institute, Communications and Society Program.

  16. Brits, A., & Cabolis, C. (2019). IMD world digital competitiveness ranking 2019. IMD World Competitiveness Center, 180, 67–71. https://doi.org/10.1080/0144287042000208233 .

    Article  Google Scholar 

  17. Brown, B., Chui, M., & Manyika, J. (2011). Are You Ready for the Era of “Big Data.” McKinsey Quarterly. https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/are-you-ready-for-the-era-of-big-data#.

  18. Bygstad, B., Øvrelid, E., Lie, T., & Bergquist, M. (2020). Developing and organizing an analytics capability for patient flow in a general hospital. Information Systems Frontiers, 22(2), 353–364. https://doi.org/10.1007/s10796-019-09920-2 .

    Article  Google Scholar 

  19. Cabitza, F., Locoro, A., & Batini, C. (2020). Making open data more personal through a social value perspective: A methodological approach. Information Systems Frontiers, 22(1), 131–148. https://doi.org/10.1007/s10796-018-9854-7 .

    Article  Google Scholar 

  20. Chakravorti, B., & Chaturvedi, R. S. (2017). Digital planet 2017: How competitiveness and trust in digital economies vary across the world. The Fletcher School, Tufts University.

  21. Chandy, R., Hassan, M., & Mukherji, P. (2017). Big data for good: Insights from emerging markets*. Journal of Product Innovation Management, 34(5), 703–713. https://doi.org/10.1111/jpim.12406 .

    Article  Google Scholar 

  22. Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly: Management Information Systems, 36(4), 1165–1188. https://doi.org/10.2307/41703503 .

    Article  Google Scholar 

  23. Chiusano, S., Cerquitelli, T., Wrembel, R., & Quercia, D. (2020). Breakthroughs on cross-cutting data management, data analytics, and applied data science. In Information Systems Frontiers (pp. 1–7). Springer. https://doi.org/10.1007/s10796-020-10091-8 .

  24. de Jong, M., & Lentz, L. (2006). Scenario evaluation of municipal web sites: Development and use of an expert-focused evaluation tool. Government Information Quarterly, 23(2), 191–206. https://doi.org/10.1016/j.giq.2005.11.007 .

    Article  Google Scholar 

  25. Decuyper, A., Rutherford, A., Wadhwa, A., Bauer, J.-M., Krings, G., Gutierrez, T., Blondel, V, D., & Luengo-Oroz, M, A. (2014). Estimating Food Consumption and Poverty Indices with Mobile Phone Data. http://arxiv.org/abs/1412.2595

  26. Devarajan, S. (2013). Africa’s statistical tragedy. Review of Income and Wealth, 59(SUPPL1), S9–S15. https://doi.org/10.1111/roiw.12013 .

    Article  Google Scholar 

  27. Durlabhji, M., & Fusilier, S. (2005). EconPapers: Student internet use: USA and Mauritius. Journal of Private Enterprise. https://econpapers.repec.org/article/jpejournl/138.htm

  28. Euler Hermes. (2018). Measuring Digitagility: The Enabling Digitalization Index Report. https://www.eulerhermes.com/en_global/economic-research/insights/1370.html

  29. Fortmeyer, R. (2012). Off the map. Architectural Record, 200(3), 112–114. https://doi.org/10.1215/9780822388869-003 .

    Article  Google Scholar 

  30. Fosso-Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031 .

    Article  Google Scholar 

  31. Friedewald, M., Vildjiounaite, E., Punie, Y., & Wright, D. (2006). The brave new world of ambient intelligence: An analysis of scenarios regarding privacy, identity and security issues. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3934 LNCS, 119–133. https://doi.org/10.1007/11734666_10 .

  32. Gobble, M. M. (2013). Big data: The next big thing in innovation. In Research Technology Management., 56, 64–67. https://doi.org/10.5437/08956308X5601005 .

    Article  Google Scholar 

  33. Google Trends (2020). https://trends.google.de/trends/explore?date=all&geo=DE&q=Big%20data. Retrieval date: 22 Dec, 2020.

  34. Grover, V., Chiang, R. H. L., Liang, T. P., & Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/07421222.2018.1451951 .

    Article  Google Scholar 

  35. GSM Association. (2017). The Mobile economy sub-Saharan Africa 2017. GSMA Intelligence, 35, 11–11 https://www.gsmaintelligence.com/research/?file=7bf3592e6d750144e58d9dcfac6adfab&download.

    Google Scholar 

  36. Günther, W. A., Rezazade Mehrizi, M. H., Huysman, M., & Feldberg, F. (2017). Debating big data: A literature review on realizing value from big data. Journal of Strategic Information Systems, 26(3), 191–209. https://doi.org/10.1016/j.jsis.2017.07.003 .

    Article  Google Scholar 

  37. Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information and Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004 .

    Article  Google Scholar 

  38. Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – A taxonomy of data-driven business models used by start-up firms. International Journal of Operations and Production Management, 36(10), 1382–1406. https://doi.org/10.1108/IJOPM-02-2014-0098 .

    Article  Google Scholar 

  39. Heeks, R. (2012). Information technology and gross national happiness. Communications of the ACM, 55(4), 24–26. https://doi.org/10.1145/2133806.2133815 .

    Article  Google Scholar 

  40. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly: Management Information Systems, 28(1), 75–105. https://doi.org/10.2307/25148625 .

    Article  Google Scholar 

  41. Hilbert, M. (2012). Toward a conceptual framework for ICT for development: Lessons learned from the cube framework used in Latin America (English). Information Technologies & International Development, 8(4), 243–259.

    Google Scholar 

  42. Hilbert, M. (2016). Big data for development: A review of promises and challenges. Development Policy Review, 34(1), 135–174. https://doi.org/10.1111/dpr.12142 .

    Article  Google Scholar 

  43. Huang, C. K., Wang, T., & Huang, T. Y. (2020). Initial evidence on the impact of big data implementation on firm performance. Information Systems Frontiers, 22(2), 475–487. https://doi.org/10.1007/s10796-018-9872-5 .

    Article  Google Scholar 

  44. International Monetary Fund. (2018). IMF Macroeconomic and Financial data. http://data.imf.org/?sk=7A51304B-6426-40C0-83DD-CA473CA1FD52

  45. Iqbal, R., Doctor, F., More, B., Mahmud, S., & Yousuf, U. (2020). Big data analytics: Computational intelligence techniques and application areas. Technological Forecasting and Social Change, 153, 119253. https://doi.org/10.1016/j.techfore.2018.03.024 .

    Article  Google Scholar 

  46. ITU. (2017). ICT Development Index. http://www.itu.int/net4/ITU-D/idi/2017/index.html

  47. Katal, A., Wazid, M., & Goudar, R, H. (2013). Big data: Issues, challenges, tools and good practices. 2013 6th international conference on contemporary computing, IC3 2013, 404–409. https://doi.org/10.1109/IC3.2013.6612229 .

  48. Keller, S., Koonin, S. E., & Shipp, S. (2012). Big data and city living - what can it do for us? Significance, 9(4), 4–7. https://doi.org/10.1111/j.1740-9713.2012.00583.x .

    Article  Google Scholar 

  49. Kenneth, A., & Senyo, W. (2019). The Report: Ghana 2019 (Oxford Business Group). https://oxfordbusinessgroup.com/ghana-2019

  50. Klievink, B., Romijn, B. J., Cunningham, S., & de Bruijn, H. (2017). Big data in the public sector: Uncertainties and readiness. Information Systems Frontiers, 19(2), 267–283. https://doi.org/10.1007/s10796-016-9686-2 .

    Article  Google Scholar 

  51. Kozma, R, B., & Vota, W, S. (2014). ICT in developing countries: Policies, implementation, and impact. In Handbook of Research on Educational Communications and Technology: Fourth Edition. https://doi.org/10.1007/978-1-4614-3185-5_72 .

  52. Kranzberg, M. (1986). Technology and history: “Kranzberg’s Laws”. Technology and Culture., 27(3), 544.

    Article  Google Scholar 

  53. Lawrence, J, E. (2013). Barriers hindering ecommerce adoption: A case study of kurdistan region of Iraq. Technology Diffusion and Adoption: Global Complexity, Global Innovation, 152–165. https://doi.org/10.4018/978-1-4666-2791-8.ch010

  54. Leidner, D, E., & Kayworth, T. (2006). Review: A review of culture in information systems research: Toward a theory of information technology culture conflict. In MIS Quarterly: Management Information Systems (Vol. 30, issue 2, pp. 357–399). Management information systems research center. https://doi.org/10.2307/25148735 .

  55. Leith, B., Krugel, L., Viljoen, C., Kirsten, N., & Joubert, A. (2016). How good is life in Africa? Digging deeper than GDP. KPMG Good Life Index. https://assets.kpmg/content/dam/kpmg/za/pdf/2016/10/How-good-is-life-in-Africa.pdf.

  56. Malero, A., & Seif, H. (2013). Hadoop and big data readiness in Africa: A case of Tanzania. International Journal for Scientific Research & Development, 1(8), 1609–1612.

    Google Scholar 

  57. Malik, P. (2013). Governing big data: Principles and practices. IBM Journal of Research and Development, 57(3/4), 1:1–1:13. https://doi.org/10.1147/jrd.2013.2241359 .

    Article  Google Scholar 

  58. Malomo, F., & Sena, V. (2017). Data intelligence for local government? Assessing the benefits and barriers to use of big data in the public sector. Policy & Internet, 9(1), 7–27. https://doi.org/10.1002/poi3.141 .

    Article  Google Scholar 

  59. Mamlin, B, W., Biondich, P, G., Wolfe, B, A., Fraser, H., Jazayeri, D., Allen, C., Miranda, J., & Tierney, W, M. (2006). Cooking up an open source EMR for developing countries: OpenMRS - a recipe for successful collaboration. AMIA Annual Symposium Proceedings, 2006, 529–533.

  60. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A, H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, June, 156. https://doi.org/10.1080/01443610903114527 .

  61. Matthew, R., Kevin, A. J., & Brian, D. (2015). The use of big data analytics in the retail industries in South Africa. African Journal of Business Management, 9(19), 688–703. https://doi.org/10.5897/ajbm2015.7827 .

    Article  Google Scholar 

  62. McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 4.

    Google Scholar 

  63. Michener, R. G. (2009). The Surrender of Secrecy? Explaining the strength of transparency and access to information laws. Explaining the Strength of Transparency and Access to Information Laws.

  64. Mikalef, P., Pappas, I, O., Krogstie, J., & Pavlou, P, A. (2020). Big data and business analytics: A research agenda for realizing business value. In Information and Management (Vol. 57, issue 1). Elsevier B.V. https://doi.org/10.1016/j.im.2019.103237 .

  65. Mneney, J., & Van Belle, J, P. (2016). Big data capabilities and readiness of south African retail organisations. Proceedings of the 2016 6th international conference - cloud system and big data engineering, confluence 2016, 279–286. https://doi.org/10.1109/CONFLUENCE.2016.7508129 .

  66. Motau, M., & Kalema, B, M. (2016). Big data analytics readiness: A south African public sector perspective. 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, EmergiTech 2016. https://doi.org/10.1109/EmergiTech.2016.7737350 .

  67. Munné, R. (2016). Big data in the public sector. In New Horizons for a Data-Driven Economy: A Roadmap for Usage and Exploitation of Big Data in Europe (pp. 195–208). https://doi.org/10.1007/978-3-319-21569-3_11 .

  68. Murawski, M., & Bick, M. (2017). Demanded and imparted big data competences: Towards an integrative analysis. Proceedings of the 25th European Conference on Information Systems. ECIS, 2017, 1375–1390.

    Google Scholar 

  69. Mutula, S. M., & van Brakel, P. (2006). E-readiness of SMEs in the ICT sector in Botswana with respect to information access. Electronic Library, 24(3), 402–417. https://doi.org/10.1108/02640470610671240 .

    Article  Google Scholar 

  70. Newell, S., & Marabelli, M. (2015). Strategic Opportunities (and Challenges) of Algorithmic Decision-Making: A Call for Action on the Long-Term Societal Effects of “Datification.” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2644093 .

  71. OpenAfrica. (n.d.). openAFRICA. Retrieved November 21, 2019, from https://africaopendata.org/dataset?q=&sort=score+desc%2C+metadata_modified+desc

  72. Opresnik, D., & Taisch, M. (2015). The value of big data in servitization. International Journal of Production Economics, 165, 174–184. https://doi.org/10.1016/j.ijpe.2014.12.036 .

    Article  Google Scholar 

  73. Pappas, I. O., Mikalef, P., Giannakos, M. N., Krogstie, J., & Lekakos, G. (2018). Big data and business analytics ecosystems: Paving the way towards digital transformation and sustainable societies. Information Systems and e-Business Management, 16(3), 479–491. https://doi.org/10.1007/s10257-018-0377-z .

    Article  Google Scholar 

  74. Pawlowski, J. M., Bick, M., Martensen, M., Peinl, R., Thalmann, S., Maier, R., Kruse, P., & Hetmank, L. (2014). Social knowledge environments. Business and Information Systems Engineering, 6(2), 81–88. https://doi.org/10.1007/s12599-014-0318-4 .

    Article  Google Scholar 

  75. Peffers, K., Tuunanen, T., Gengler, C, E., Rossi, M., Hui, W., Virtanen, V., & Bragge, J. (2006). The design science research process: A model for producing and presenting information systems research. DESRIST 2006.

  76. Perez, C. (2004). Technological revolutions, paradigm shifts and socio-institutional change. In Globalization, Economic Development and Inequality: An Alternative Perspective (pp. 217–242). https://doi.org/10.4337/9781845421625.00016 .

  77. Phelps, E, S. (1980). Investment in Humans, technological diffusion, and economic growth. Studies in Macroeconomic Theory, 133–139. https://doi.org/10.1016/b978-0-12-554002-5.50015-7 .

  78. Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The impact of big data analytics on firms’ high value business performance. Information Systems Frontiers., 20, 209–222. https://doi.org/10.1007/s10796-016-9720-4 .

    Article  Google Scholar 

  79. Rayward-Smith, V. J., & Mirkin, B. (1997). Mathematical classification and clustering. The Journal of the Operational Research Society., 48, 852. https://doi.org/10.2307/3010720 .

    Article  Google Scholar 

  80. Russom, P. (2011). Big data analytics - TDWI best practices report. In TDWI Best Practices Report, Fourth Quarter (Issue August). https://doi.org/10.1109/ICCICT.2012.6398180 .

  81. Sengeh, D. (2017). [missing data]: Achieving the value of big data analytics in Africa. https://www.linkedin.com/pulse/missing-data-achieving-value-big-analytics-africa-david-sengeh

  82. Shah, N., Irani, Z., & Sharif, A. M. (2017). Big data in an HR context: Exploring organizational change readiness, employee attitudes and behaviors. Journal of Business Research, 70, 366–378. https://doi.org/10.1016/j.jbusres.2016.08.010 .

    Article  Google Scholar 

  83. Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of big data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001 .

    Article  Google Scholar 

  84. Strawn, G.. (2012). Scientific research: How many paradigms? EDUCAUSE Review. https://er.educause.edu/articles/2012/6/scientific-research-how-many-paradigms

  85. UNDP. (2015). Human Development Data (1980–2015). Human Development Reports. http://hdr.undp.org/en/data

  86. Venable, J, R., Pries-Heje, J., Baskerville, R, L., Venable, J, R., Pries-Heje, J. ;, & Baskerville, R. (2017). Choosing a design science research methodology. In Australia Choosing a Design Science Research Methodology (Vol. 2). https://aisel.aisnet.org/acis2017/112

  87. Wiener, M., Saunders, C., & Marabelli, M. (2020). Big-data business models: A critical literature review and multiperspective research framework. Journal of Information Technology, 35(1), 66–91. https://doi.org/10.1177/0268396219896811 .

    Article  Google Scholar 

  88. World Bank. (2015). Open Data Gaining Momentum in Africa. https://www.worldbank.org/en/news/feature/2015/09/29/open-data-gaining-momentum-in-africa

  89. Zarsky, T. (2017). Incompatible: The GDPR in the age of big data. Seton Hall Law Review, 47, 995.

  90. Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). Sensing as a service and big data. International conference on advances in cloud computing (ACC-2012), 21–29. http://arxiv.org/abs/1301.0159

  91. Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in different countries: A technology diffusion perspective on e-business. Management Science, 52(10), 1557–1576. https://doi.org/10.1287/mnsc.1050.0487 .

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthias Murawski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joubert, A., Murawski, M. & Bick, M. Measuring the Big Data Readiness of Developing Countries – Index Development and its Application to Africa. Inf Syst Front (2021). https://doi.org/10.1007/s10796-021-10109-9

Download citation

Keywords

  • Africa
  • Big data readiness index
  • Design science research
  • Developing countries