Information Systems Frontiers

, Volume 15, Issue 5, pp 849–871 | Cite as

Ontology-based data access: An application to intermodal logistics



In this paper, we investigate ontology-based data access (OBDA) to build information systems whose purposes are (i) gathering data from a network of intermodal terminals, and (ii) computing performance indicators of the network. This application domain is characterized by large amounts of data and relatively simple data models, making it a natural challenge for logic-based knowledge representation and reasoning techniques. Considering relational database (RDB) technology as a yardstick, we show that careful engineering of OBDA can achieve RDB-like scalability even in demanding applications. To the best of our knowledge, this is the first study evaluating the potential of OBDA in a typical business-size application.


Knowledge representation and reasoning Ontology-based data access Monitoring and diagnosis of complex systems 


  1. Agha, G. (1985). Actors: A model of concurrent computation in distributed systems. PhD thesis, University of Michigan.Google Scholar
  2. Baader, F. (2003). The description logic handbook: Theory, implementation, and applications. Cambridge: Cambridge University Press.Google Scholar
  3. Bechhofer, S., Harmelen, F.V., Hendler, J., Horrocks, I., McGuinness, M., Patel-Schneider, P., Stein, L., et al. (2004) OWLWeb ontology language reference. W3C recommendation 10.Google Scholar
  4. Bock, J., Haase, P., Ji, Q., Volz, R. (2008). Benchmarking OWL reasoners. In Proc of the ARea2008 workshop. Tenerife, Spain.Google Scholar
  5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R. (2005). DL-Lite: tractable description logics for ontologies. In Twentieth national conference on artificial intelligence and the seventeenth innovative applications of artificial intelligence conference (pp. 602–607).Google Scholar
  6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R. (2007a). EQL-Lite: effective first-order query processing in description logics. In IJCAI (pp. 274–279).Google Scholar
  7. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R. (2007b). Tractable reasoning and efficient query answering in description logics: the DL-Lite family. Journal of Automated Reasoning, 39(3), 385–429.CrossRefGoogle Scholar
  8. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro,M., Rosati, R. (2009). Ontologies and databases: the DL-Lite approach. In Reasoning Web semantic technologies for information systems (pp. 255–356).Google Scholar
  9. Codd, E. (1970). A relationalmodel of data for large shared data banks. Communications of the ACM, 13(6), 377–387.CrossRefGoogle Scholar
  10. Cuenca-Grau, B., Horrocks, I., Kazakov, Y., Sattler, U. (2007) . A logical framework for modularity of ontologies. In Proc. IJCAI (pp. 298–304).Google Scholar
  11. Cuenca-Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U. (2008). OWL 2: the next step for OWL. Web Semantics: Science, Services and Agents on the World Wide Web, 6(4), 309–322.CrossRefGoogle Scholar
  12. Dahlgren, K. (1995). A linguistic ontology. International Journal of Human-Computer Studies, 43(5), 809–818.CrossRefGoogle Scholar
  13. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y. (2003). Taming heterogeneity—the Ptolemy approach. Proceedings of the IEEE, 91(1), 127–144.CrossRefGoogle Scholar
  14. Elmasri, R., & Navathe, S. (2004). Fundamentals of database systems. Paris: Pearson Education.Google Scholar
  15. Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., Noy, N., Tu, S. (2003). The evolution of protégé: an environment for knowledge-based systems development. International Journal of Human-Computer Studies, 58(1), 89–123.CrossRefGoogle Scholar
  16. Gruber, T. (1995). Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 43(5), 907–928.CrossRefGoogle Scholar
  17. Horrocks, I. (2012). Semantics \(\sqcap \) scalability \(\models \) \(\bot \)? Journal of Zhejiang University - Science C, 13(4), 241–244.CrossRefGoogle Scholar
  18. Kazakov, Y. (2008). \({\cal R I Q}\) and \({\cal S R O I Q}\) are harder than \({\cal S H O I Q}\). In Description logics.Google Scholar
  19. Klyne, G., Carroll, J., McBride, B. (2004). Resource description framework (RDF): concepts and abstract syntax. W3C recommendation 10.Google Scholar
  20. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Zakharyaschev, M. (2009). Minimal module extraction from DL-Lite ontologies using QBF solvers. In Proc. of IJCAI-09 (pp. 836–841).Google Scholar
  21. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M. (2010). The combined approach to query answering in DL-Lite. In Proceedings of KR.Google Scholar
  22. Lutz, C. (2002). The complexity of description logics with concrete domains. PhD thesis, University of Hamburg.Google Scholar
  23. Lutz, C., Seylan, I., Toman, D., Wolter, F. (2012) . The combined approach to OBDA: taming role hierarchies using filters.
  24. McBride, B. (2002). Jena: a semantic Web toolkit. IEEE Internet Computing, 6(6), 55–59.CrossRefGoogle Scholar
  25. Motik, B., Horrocks, I., Sattler, U. (2006). Integrating description logics and relational databases. Tech. rep., University of Manchester.Google Scholar
  26. Motik, B., Patel-Schneider, P., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler, U., et al. (2009). OWL 2 Web ontology language: structural specification and functional-style syntax. W3C recommendation 27.Google Scholar
  27. MySQL-AB (2005). Mysql.
  28. Pérez-Urbina, H., Horrocks, I., Motik, B. (2009). Practical aspects of query rewriting for OWL 2. In OWL: experiences and directions 2009.Google Scholar
  29. Prud’Hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF. W3C working draft 4.Google Scholar
  30. Rodrıguez-Muro, M., & Calvanese, D. (2011). Dependencies to optimize ontology based data access. In Description logics.Google Scholar
  31. Rodriguez-Muro, M., & Calvanese, D. (2012a) . High performance query answering over DL-Lite ontologies. In Proc. of the 13th int. conf. on the principles of knowledge representation and reasoning (KR 2012) (pp. 308–318).Google Scholar
  32. Rodrıguez-Muro, M., & Calvanese, D. (2012b). Quest, an OWL 2 QL reasoner for ontology-based data access. In OWLED 2012.Google Scholar
  33. Rogers, J., & Rector, A. (1996). The GALEN ontology. In Medical Informatics Europe (MIE 96) (pp. 174–178).Google Scholar
  34. Savo, D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Romagnoli, V., Ruzzi, M., Stella, G. (2010). MASTRO at work: experiences on ontology-based data access. Proc. of DL, 573, 20–31.Google Scholar
  35. Seaborne, A. (2010). ARQ—a SPARQL processor for Jena. Accessed 1/5/2010.
  36. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y. (2007). Pellet: a practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51–53. Available on-line from Scholar
  37. Spyns, P., Meersman, R., Jarrar, M. (2002). Data modelling versus ontology engineering. ACM SIGMOD Record, 31(4), 12–17.CrossRefGoogle Scholar
  38. Wu, Z., Eadon, G., Das, S., Chong, E., Kolovski, V., Annamalai, M., Srinivasan, J. (2008). Implementing an inference engine for RDFS/OWL constructs and user-defined rules in oracle. In IEEE 24th international conference on data engineering, 2008. ICDE 2008 (pp. 1239–1248). Piscataway: IEEE.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Matteo Casu
    • 1
  • Giuseppe Cicala
    • 1
  • Armando Tacchella
    • 1
  1. 1.Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Scuola PolitecnicaUniversità degli Studi di GenovaGenovaItaly

Personalised recommendations