Information Systems Frontiers

, Volume 12, Issue 2, pp 115–139 | Cite as

UML-CI: A reference model for profiling critical infrastructure systems



The study of critical infrastructure systems organization and behavior has drawn great attention in the recent years. This is in part due to their great influence on the ordinary life of every citizen. In this paper, we study critical infrastructures’ characteristics and propose a reference model based on the Unified Modeling Language (UML). This reference model attempts to provide suitable means for the task of modeling an infrastructure system through offering five major metamodels. We introduce each of these metamodels and explain how it is possible to integrate them into a unique representation to characterize various aspects of an infrastructure system. Based on the metamodels of UML-CI, infrastructure system knowledge bases can be built to aid the process of infrastructure system modeling, profiling, and management.


Modeling and profiling Critical infrastructure systems UML profiles Infrastructure system knowledge bases 


  1. Allenby, B. (2004). Infrastructure in the anthropocene: Example of information and communication technology. Journal of Infrastructure Systems, 10(3), 79–86.CrossRefGoogle Scholar
  2. Amin, M. (2000). National infrastructures as complex interactive networks. Automation, control and complexity: An integrated approach (pp. 263–286). New York: Wiley.Google Scholar
  3. Atkinson, C., & Kuhne, T. (2003). Model-driven development: A metamodeling foundation. Software, IEEE, 20(5), 36–41.CrossRefGoogle Scholar
  4. Bagheri, E., & Ghorbani, A. A. (2006a). A service oriented approach to critical infrastructure modeling. In Workshop on service oriented techniques. National Research Council: Canada, August.Google Scholar
  5. Bagheri, E., & Ghorbani, A. A. (2006b). Towards an mda-oriented uml profile for critical infrastructure modeling. In International conference on privacy, security and trust. ACM, October.Google Scholar
  6. Bagheri, E., & Ghorbani, A. A. (2008a). Astrolabe: A collaborative multi-perspective goal-oriented risk analysis methodology. IEEE Transactions on Systems, Man and Cybernetics, Part A, in press.Google Scholar
  7. Bagheri, E., & Ghorbani, A. A. (2008b) The state of the art in critical infrastructure protection: A framework for convergence. International Journal of Critical Infrastructures, 4(3), 215–244.CrossRefGoogle Scholar
  8. Bagheri, E., Baghi, H., Ghorbani, A. A., & Yari, A. (2007). An agent-based service-oriented simulation suite for critical infrastructure behavior analysis. International Journal of Business Process Integration and Management, 2(4), 312–326.CrossRefGoogle Scholar
  9. Barton, D. C., Eidson, E. D., Schoenwald, D. A., Stamber, K. L., & Reinert, R. K. (2000). Aspen-ee: An agent-based model of infrastructure interdependency. Technical Report SAND2000-2925.Google Scholar
  10. Barton, D. C., & Stamber, K. L. (2000). An agent-based microsimulation of critical infrastructure systems. Technical Report SAND2000-0808C.Google Scholar
  11. Basu, N., Pryor, R., & Quint, T. (1998). Aspen: A microsimulation model of the economy. Computational Economics, 12(3), 223–41.CrossRefGoogle Scholar
  12. Brown, T., Beyeler, W., & Barton, D. (2004). Assessing infrastructure interdependencies: the challenge of risk analysis for complex adaptive systems. International Journal of Critical Infrastructures, 1(1), 108–117.CrossRefGoogle Scholar
  13. CIP-Commission (1997). Critical foundations: Protecting Americas infrastructures. Technical report.Google Scholar
  14. Dunn, M. (2005). The socio-political dimensions of critical information infrastructure protection (ciip). International Journal of Critical Infrastructures, 1, 258–268.CrossRefGoogle Scholar
  15. Fowler, M. (2004). Uml distilled: A brief guide to the standard object modeling language. New York: Addison-Wesley Professional.Google Scholar
  16. Fuentes-Fernandez, L., & Vallecillo-Moreno, A. (2004). An introduction to uml profiles. UPGRADE, European Journal for the Informatics Professional, 5(2), 5–13, April.Google Scholar
  17. Haimes, Y. Y. (1981). Hierarchical holographic modeling. Transaction on Systems, Man, and Cybernetics, 11, 606–617.CrossRefGoogle Scholar
  18. Haimes, Y. Y., Horowitz, B. M., Lambert, J. H., Santos, J. R., Lian, C., & Crowther, K. G. (2005a). Inoperability input-output model for interdependent infrastructure sectors. I: Theory and methodology. Journal of Infrastructure Systems, 11(2), 67–79.CrossRefGoogle Scholar
  19. Haimes, Y.Y., Horowitz, B.M., Lambert, J.H., Santos, J.R., Lian, C., & Crowther, K.G. (2005b). Inoperability input-output model for interdependent infrastructure sectors. II: Case studies. Journal of Infrastructure Systems, 11(2), 80–92.CrossRefGoogle Scholar
  20. Herder, P. M., Turk, A. L., Subrahmanian, E., & Westerberg, A. W. (2000). Challenges for process systems engineering in infrastructure design. Computers and Chemical Engineering, 24, 1775–1780. M3: doi:10.1016/S0098-1354(00)00463-4.CrossRefGoogle Scholar
  21. Jonsson, D. K. (2005). The nature of infrasystem services. Journal of Infrastructure Systems, 11(1), 2–8.CrossRefGoogle Scholar
  22. Kletz, T. A. (1999). Hazop and Hazan: Identifying and assessing process industry hazards. London: Taylor Francis.Google Scholar
  23. Leontief, W. (1951). The structure of the American economy. New York: Oxford University Press.Google Scholar
  24. Leontief, W. (1966). Input-output economics. New York: Oxford University Press.Google Scholar
  25. Narich, R. (2005). Critical infrastructure, continuity of services and international cooperation. International Journal of Critical Infrastructures, 1, 293–298.Google Scholar
  26. Nozick, L. K., Turnquist, M. A., Jones, D. A., Davis, J. R., & Lawton, C. R. (2005). Assessing the performance of interdependent infrastructures and optimising investments. International Journal of Critical Infrastructures, 1(2/3), 144–154.CrossRefGoogle Scholar
  27. Panzieri, S., Setola, R., & Ulivi, G. (2005). An approach to model complex interdependent infrastructures. In 16th IFAC World Congress.Google Scholar
  28. Rinaldi, S. M. (2004). Modeling and simulating critical infrastructures and their interdependencies. In System sciences, 2004. Proceedings of the 37th annual Hawaii international conference on, p. 8.Google Scholar
  29. Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems Magazine, 21(6), 11–25.CrossRefGoogle Scholar
  30. Schoenwald, D. A., Barton, D. C., & Ehlen, M. A. (2004). An agent-based simulation laboratory for economics and infrastructure interdependency. In Proceedings of the 2004 American control conference (vol. 2, pp. 1295–1300).Google Scholar
  31. Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5), 19–25.CrossRefGoogle Scholar
  32. Thissen, W. A., & Herder, P. M. (2003). Critical infrastructures: challenges for systems engineering. In IEEE International conference on systems, man and cybernetics, 2003 (vol. 2, pp. 2042–2047).Google Scholar
  33. Uml infrastructure specification, v2.1.1. Technical report, Object Management Group, February 2007.Google Scholar
  34. Warmer, J., & Kleppe, A. (2003). The object constraint language: Getting your models ready for MDA. New York: Addison Wesley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Computer ScienceUniversity of New BrunswickFrederictonCanada

Personalised recommendations