Information Systems Frontiers

, Volume 10, Issue 4, pp 415–429 | Cite as

Network effects as drivers of individual technology adoption: Analyzing adoption and diffusion of mobile communication services

  • Roman Beck
  • Daniel Beimborn
  • Tim Weitzel
  • Wolfgang König


Adoption research has largely ignored the dynamic impact of network effects on technology adoption and diffusion. For example, some technologies become more attractive the more social peers use them as well. But adoption at the same time increases the value for the peers and thereby their adoption decisions as well. Unfortunately, interdependencies like these make adoption and diffusion patterns very complex. Drawing on network effect theory, we develop an adoption and diffusion model that explicitly considers the role of direct and indirect network effects for individual technology adoption, using mobile commerce adoption as application example. By applying a simulation approach we can exemplify and analyze the fundamental adoption dynamics given rise to by network effects. We thereby propose a way of how to incorporate network effects into adoption research and disclose the role of the technology diffusion lifecycle for individual adoption.


Diffusion Network effect theory Intertemporal consumer choice Dynamic diffusion processes Diffusion cycle model 


  1. Arthur, B. W. (1989). Competing technologies, increasing returns, and lock-in by historical events. The Economic Journal, 99(394), 116–131.CrossRefGoogle Scholar
  2. Arthur, B. W. (1990). Positive feedbacks in the economy. Scientific American, 262(2), 92–99.CrossRefGoogle Scholar
  3. Arthur, B. W. (1996). Increasing returns and the New World of Business. Harvard Business Review, 74(4), 100–109.Google Scholar
  4. Barnes, S. J., & Huff, S. L. (2003). Rising sun: iMode and the wireless Internet. Communications of the ACM, 46(11), 79–84.CrossRefGoogle Scholar
  5. Beck, R. (2006). The Network(ed) Economy. The Nature, Adoption and Diffusion of Communication Standards. Wiesbaden, Germany: Deutscher Universitätsverlag.Google Scholar
  6. Benbasat, I., & Barki, H. (2007). Quo vadis, TAM? Journal of the Association for Information Systems, 8(4), 211–218.Google Scholar
  7. Besen, S. M., & Farrell, J. (1994). Choosing how to compete: strategies and tactics in standardization. The Journal of Economic Perspectives, 8(2), 117–131.Google Scholar
  8. Buxmann, P. (2001). Network effects on standard software markets: A simulation model to examine pricing strategies. Proceedings of the 2nd IEEE Conference on Standardization and Innovation in Information Technology, SIIT 2001, Boulder, CO, USA.Google Scholar
  9. Buxmann, P., Weitzel, T., Westarp, F. V., & König, W. (1999). The Standardization Problem: An Economic Analysis of Standards in Information Systems. Proceedings of the 1st IEEE Conference on Standardization and Innovation in Information Technology, SIIT 1999, Boulder, CO, USA.Google Scholar
  10. Chou, C.-F., & Shy, O. (1990). Network effects without network externalities. International Journal of Industrial Organization, 8(2), 259–270.CrossRefGoogle Scholar
  11. Church, J., & Gandal, N. (1992). Network effects, software provision, and standardization. Journal of Industrial Economics, 40(1), 85–103.CrossRefGoogle Scholar
  12. Clements, M. T., & Ohashi, H. (2004). Indirect network effects and the product cycle: Video games in the U.S., 1994–2002. The Networks, Electronic Commerce, and Telecommunications ("NET") Institute. Accessed 08 April 2008.
  13. Coleman, J., Menzel, H., & Katz, E. (1957). The diffusion of an innovation among physicians. Sociometry, 20, 253–270.CrossRefGoogle Scholar
  14. Cowan, R. (1990). Nuclear power reactors: a study in technological lock-in. The Journal of Economic History, 50(3), 541–567.Google Scholar
  15. Cowan, R. (1992). High technology and the economics of standardization. In U. Hoffmann & M. Dierkes (Eds.), New technology at the outset. Social forces in the shaping of technological innovations (pp. 279–300). Campus.Google Scholar
  16. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339.CrossRefGoogle Scholar
  17. David, P. A. (1994). Positive feedbacks and research productivity in science: Reopening another black box. In O. Grandstrand (Ed.), Economics of technology. Amsterdam: Elsevier.Google Scholar
  18. Economides, N., & Flyer, F. (1998). Compatibility and market structure for network goods. Discussion Paper EC-98-02. Accessed 08 April 2008.
  19. Economides, N., & Himmelberg, C. (1995). Critical mass and network evolution in telecommunications. In G. Brock (Ed.), Toward a competitive telecommunications industry: Selected Papers from the 1994 Telecommunications Policy Research Conference. Lawrence Erlbaum Association.Google Scholar
  20. Farrell, J., & Saloner, G. (1985). Standardization, compatibility and innovation. The RAND Journal of Economics, 16(1), 70–83.CrossRefGoogle Scholar
  21. Farrell, J., & Saloner, G. (1986). Installed base and compatibility: innovation, product preannouncements, and predation. The American Economic Review, 76(5), 940–955.Google Scholar
  22. Farrell, J., & Saloner, G. (1992). Converters, compatibility, and the control of interfaces. Journal of Industrial Economics, 40(1), 9–35.CrossRefGoogle Scholar
  23. Greenstein, S. M. (1993). Did installed base give an incumbent any (Measurable) advantages in federal computer procurement? The RAND Journal of Economics, 24(1), 19–39.CrossRefGoogle Scholar
  24. Hildebrand, W. (1976). Introduction to equilibrium analysis: Variations on themes by Edgeworth and Walras. Amsterdam: Elsevier.Google Scholar
  25. Katz, M. L., & Shapiro, C. (1985). Network externalities, competition and compatibility. The American Economic Review, 75(3), 424–440.Google Scholar
  26. Leibenstein, H. (1950). Bandwagon, snob, and veblen effects in the theory of consumers’ demand. The Quarterly Journal of Economics, 64(2), 183–207.CrossRefGoogle Scholar
  27. Liebowitz, S. J., & Margolis, S. E. (1994). Network externality: an uncommon tragedy. The Journal of Economic Perspectives, 8(2), 131–150.Google Scholar
  28. Liebowitz, S. J., & Margolis, S. E. (1995). Path dependence, lock-in, and history. Journal of Law, Economics and Organization, 11(4), 205–225.Google Scholar
  29. Lim, B.-L., Choi, M., & Park, M.-C. (2003). The late take-off phenomenon in the diffusion of telecommunication services: Network effect and the critical mass. Information Economics and Policy, 15(4), 537–557.CrossRefGoogle Scholar
  30. Naylor, T. H., Finger, J. M., McKenney, J. L., Schrank, W. E., & Holt, C. C. (1967). Verification of computer simulation models. Management Science, 14(2), B92–B106.CrossRefGoogle Scholar
  31. Rohlfs, J. (1974). A theory of interdependent demand for a communications service. The Bell Journal of Economics and Management Science, 5(1), 16–37.CrossRefGoogle Scholar
  32. Rohlfs, J. (2003). Bandwagon effects in high-technology industries. Cambridge: MIT.Google Scholar
  33. Sargent, R. G. (1998). Verification and validation of simulation models. In D. J. Medeiros, E. F. Watson, J. Carson, & M. Manivannan (Eds.), Proceedings of the 1998 Winter Simulation Conference (pp. 121–130). Washington, DC, USA: SCS.Google Scholar
  34. Shapiro, C., & Varian, H. R. (1998). Information rules: A strategic guide to the network economy. Boston: Harvard Business School Press.Google Scholar
  35. Siau, K., Lim, E.-P., & Shen, Z. (2001). Mobile commerce: Promises, challenges, and research agenda. Journal of Database Management, 12(3), 4–13.Google Scholar
  36. Teece, D. J. (1987). Capturing value from technological innovation: Integration, strategic partnering, and licensing decisions. In B. R. Guile, & H. Brooks (Eds.), Technology and global industry: Companies and nations in the world economy. Washington, DC: National Academy Press.Google Scholar
  37. Valente, T. W. (1995). Network models of the diffusion of innovations. Cresskill, New York: Hampton.Google Scholar
  38. Weitzel, T. (2004). Economics of Standards in information networks, information age economy. Heidelberg New York: Physica.Google Scholar
  39. Weitzel, T., Beimborn, D., & König, W. (2006). A unified model of standard diffusion: The impact of standardization cost, network effects, and network topology. MIS Quarterly, 30(special issue), 489–514.Google Scholar
  40. Weitzel, T., Wendt, O., & Westarp, F. V. (2000). Reconsidering network effect theory. Proceedings of the 8th European Conference on Information Systems (ECIS 2000), Vienna, Austria.Google Scholar
  41. Weitzel, T., Wendt, O., Westarp, F. V., & König, W. (2003). Network effects and diffusion theory: Extending economic network analysis. Journal of IT Standards & Standardization Research, 1(2), 1–21.Google Scholar
  42. Wendt, O., & Westarp, F. V. (2000). Determinants of diffusion in network effect markets. Proceedings of the IRMA International Conference, Anchorage, USA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Roman Beck
    • 1
  • Daniel Beimborn
    • 2
  • Tim Weitzel
    • 2
  • Wolfgang König
    • 1
  1. 1.Institute of Information SystemsJ. W. Goethe UniversityFrankfurtGermany
  2. 2.Chair of Information Systems and ServicesOtto Friedrich UniversityBambergGermany

Personalised recommendations