Ocular biometry through fully refocused steady-state magnetic resonance imaging sequence: reliability and agreement with the IOLMaster® 500

Abstract

Purpose

To evaluate the reliability and agreement between Fully Refocused Steady-State magnetic resonance sequences (FRSS) and the IOLMaster® 500 optical biometer for measuring anterior chamber depth (ACD) and axial length (AL).

Methods

In a sample of 32 healthy volunteers, separate observers measured the ACD and AL of both eyes using both techniques (inter-method) and through repeated FRSS measurements (interobserver) and by the same observer (intraobserver). We employed the Bland–Altman method to determine the agreement between FRSS and partial coherence interferometry (using the IOLMaster®) and the interobserver and intraobserver variability, providing the limits of agreement (LoA, or mean difference ± 1.96 SD). Correlation coefficients and intraclass correlation coefficients were also provided.

Results

For ACD measurements with FRSS in pseudo-color scale, we obtained an LoA of 0.016 ± 0.266 mm compared with partial coherence interferometry. For AL with FRSS in greyscale, the LoA was 0.019 ± 0.383 mm. Maximum interobserver variability showed a  − 0.036 ± 0.247 mm LoA for ACD with FRSS in pseudo-color scale. Maximum intraobserver variability was 0.000 ± 0.157 mm LoA for AL with FRSS in greyscale.

Conclusions

ACD and AL measurements using FRSS sequencing present high LoA and reliability when compared with partial coherence interferometry using the IOLMaster® 500. The results were better for FRSS in pseudo-color scale in ACD determination and for FRSS in greyscale in AL determination. FRSS would not be recommended for IOL power calculation due to variability of AL measurement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Wu Y, Liu S, Liao R (2017) Prediction accuracy of intraocular lens power calculation methods after laser refractive surgery. BMC Ophthalmol 17(1):44. https://doi.org/10.1186/s12886-017-0439-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Yanagisawa M, Yamashita T, Matsuura M, Fujino Y, Murata H, Asaoka R (2018) Changes in axial length and progression of visual field damage in glaucoma. Invest Ophthalmol Vis Sci 59(1):407–417. https://doi.org/10.1167/iovs.17-22949

    Article  PubMed  Google Scholar 

  3. 3.

    Wang W, Li X, Chen S, Huang W, Zhang X (2018) Biometric differences between unilateral chronic primary angle closure glaucoma and fellow non-glaucomatous eyes. Semin Ophthalmol 33(5):595–601. https://doi.org/10.1080/08820538.2017.1375121

    Article  PubMed  Google Scholar 

  4. 4.

    Lee AC, Qazi MA, Pepose JS (2008) Biometry and intraocular lens power calculation. Curr Opin Ophthalmol 19(1):13–17. https://doi.org/10.1097/ICU.0b013e3282f1c5ad

    Article  PubMed  Google Scholar 

  5. 5.

    Chia TMT, Nguyen MT, Jung HC (2018) Comparison of optical biometry versus ultrasound biometry in cases with borderline signal-to-noise ratio. Clin Ophthalmol 12:1757–1762. https://doi.org/10.2147/opth.S170301

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Townsend KA, Wollstein G, Schuman JS (2008) Clinical application of MRI in ophthalmology. NMR Biomed 21(9):997–1002. https://doi.org/10.1002/nbm.1247

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Obata T, Uemura K, Nonaka H, Tamura M, Tanada S, Ikehira H (2006) Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts. Magn Reson Imag 24(1):97–101. https://doi.org/10.1016/j.mri.2005.10.011

    Article  Google Scholar 

  8. 8.

    Herrick RC, Hayman LA, Taber KH, Diaz-Marchan PJ, Kuo MD (1997) Artifacts and pitfalls in MR imaging of the orbit: a clinical review. Radiographics 17(3):707–724. https://doi.org/10.1148/radiographics.17.3.9153707

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Chavhan GB, Babyn PS, Jankharia BG, Cheng HL, Shroff MM (2008) Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics 28(4):1147–1160. https://doi.org/10.1148/rg.284075031

    Article  PubMed  Google Scholar 

  10. 10.

    GRANMO sample size and power calculator. Institut Hosital del Mar d´Investigacions Mediques, Barcelona (Spain). https://www.imim.cat/ofertadeserveis/software-public/granmo/. Accesed 12 March 2019.

  11. 11.

    Prieto L, Lamarca R, Casado A (1998) Assessment of the reliability of clinical findings: the intraclass correlation coefficient. Med Clin 110(4):142–145

    CAS  Google Scholar 

  12. 12.

    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    CAS  Article  Google Scholar 

  13. 13.

    Fea AM, Annetta F, Cirillo S, Campanella D, De Giuseppe M, Regge D, Grignolo FM (2005) Magnetic resonance imaging and Orbscan assessment of the anterior chamber. J Cataract Refract Surg 31(9):1713–1718. https://doi.org/10.1016/j.jcrs.2005.02.040

    Article  PubMed  Google Scholar 

  14. 14.

    Nagra M, Gilmartin B, Logan NS (2014) Estimation of ocular volume from axial length. Br J Ophthalmol 98(12):1697–1701. https://doi.org/10.1136/bjophthalmol-2013-304652

    Article  PubMed  Google Scholar 

  15. 15.

    Akduman EI, Nacke RE, Leiva PM, Akduman L (2008) Accuracy of ocular axial length measurement with MRI. Ophthalmologica 222(6):397–399. https://doi.org/10.1159/000153419

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Guo X, Xiao O, Chen Y, Wu H, Chen L, Morgan IG, He M (2017) Three-dimensional eye shape, myopic maculopathy, and visual acuity: the zhongshan ophthalmic center-brien holden vision institute high myopia cohort study. Ophthalmology 124(5):679–687. https://doi.org/10.1016/j.ophtha.2017.01.009

    Article  PubMed  Google Scholar 

  17. 17.

    Dominguez-Vicent A, Perez-Vives C, Ferrer-Blasco T, Garcia-Lazaro S, Montes-Mico R (2016) Device interchangeability on anterior chamber depth and white-to-white measurements: a thorough literature review. Int J Ophthalmol 9(7):1057–1065

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Nemeth G, Hassan Z, Modis L Jr, Szalai E, Katona K, Berta A (2011) Comparison of anterior chamber depth measurements conducted with Pentacam HR(R) and IOLMaster(R). Ophthalmic Surg Lasers Imag 42(2):144–147. https://doi.org/10.3928/15428877-20110210-03

    Article  Google Scholar 

  19. 19.

    Utine CA, Altin F, Cakir H, Perente I (2009) Comparison of anterior chamber depth measurements taken with the Pentacam, Orbscan IIz and IOLMaster in myopic and emmetropic eyes. Acta Ophthalmol 87(4):386–391. https://doi.org/10.1111/j.1755-3768.2008.01278.x

    Article  PubMed  Google Scholar 

  20. 20.

    Dinc UA, Gorgun E, Oncel B, Yenerel MN, Alimgil L (2010) Assessment of anterior chamber depth using Visante optical coherence tomography, slitlamp optical coherence tomography, IOL Master, Pentacam and Orbscan IIz. Ophthalmologica 224(6):341–346. https://doi.org/10.1159/000313815

    Article  PubMed  Google Scholar 

  21. 21.

    Muzyka-Wozniak M, Oleszko A (2019) Comparison of anterior segment parameters and axial length measurements performed on a Scheimpflug device with biometry function and a reference optical biometer. Int Ophthalmol 39(5):1115–1122. https://doi.org/10.1007/s10792-018-0927-x

    Article  PubMed  Google Scholar 

  22. 22.

    Rozema JJ, Wouters K, Mathysen DG, Tassignon MJ (2014) Overview of the repeatability, reproducibility, and agreement of the biometry values provided by various ophthalmic devices. Am J Ophthalmol 158(6):1111-1120.e1111. https://doi.org/10.1016/j.ajo.2014.08.014

    Article  PubMed  Google Scholar 

  23. 23.

    Savant V, Chavan R, Pushpoth S, Ilango B (2008) Comparability and intra-/interobserver reliability of anterior chamber depth measurements with the Pentacam and IOLMaster. J Refract Surg 24(6):615–618. https://doi.org/10.3928/1081597x-20080601-11

    Article  PubMed  Google Scholar 

  24. 24.

    Badano A, Revie C, Casertano A, Cheng WC, Green P, Kimpe T, Krupinski E, Sisson C, Skrovseth S, Treanor D, Boynton P, Clunie D, Flynn MJ, Heki T, Hewitt S, Homma H, Masia A, Matsui T, Nagy B, Nishibori M, Penczek J, Schopf T, Yagi Y, Yokoi H (2015) Consistency and standardization of color in medical imaging: a consensus report. J Digit Imag 28(1):41–52. https://doi.org/10.1007/s10278-014-9721-0

    Article  Google Scholar 

  25. 25.

    Tanitame K, Sone T, Miyoshi T, Tanitame N, Otani K, Akiyama Y, Takasu M, Date S, Kiuchi Y, Awai K (2013) Ocular volumetry using fast high-resolution MRI during visual fixation. AJNR Am J Neuroradiol 34(4):870–876. https://doi.org/10.3174/ajnr.A3305

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kuo AN, Verkicharla PK, McNabb RP, Cheung CY, Hilal S, Farsiu S, Chen C, Wong TY, Ikram MK, Cheng CY, Young TL, Saw SM, Izatt JA (2016) Posterior eye shape measurement with retinal OCT compared to MRI. Invest Ophthalmol Vis Sci 57(9):196–203. https://doi.org/10.1167/iovs.15-18886

    Article  Google Scholar 

  27. 27.

    Erb-Eigner K, Hirnschall N, Hackl C, Schmidt C, Asbach P, Findl O (2015) Predicting lens diameter: ocular biometry with high-resolution MRI. Invest Ophthalmol Vis Sci 56(11):6847–6854. https://doi.org/10.1167/iovs.15-17228

    Article  PubMed  Google Scholar 

  28. 28.

    Tehrani M, Krummenauer F, Blom E, Dick HB (2003) Evaluation of the practicality of optical biometry and applanation ultrasound in 253 eyes. J Cataract Refract Surg 29(4):741–746. https://doi.org/10.1016/s0886-3350(02)01740-6

    Article  PubMed  Google Scholar 

  29. 29.

    Berges O, Puech M, Assouline M, Letenneur L, Gastellu-Etchegorry M (1998) B-mode-guided vector-A-mode versus A-mode biometry to determine axial length and intraocular lens power. J Cataract Refract Surg 24(4):529–535. https://doi.org/10.1016/s0886-3350(98)80297-6

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Dong J, Zhang Y, Zhang H, Jia Z, Zhang S, Wang X (2018) Comparison of axial length, anterior chamber depth and intraocular lens power between IOLMaster and ultrasound in normal, long and short eyes. PLoS ONE 13(3):e0194273. https://doi.org/10.1371/journal.pone.0194273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

LIPS, JGV and JJGH contributed to the study conception and design. Data collection was performed by LIPS, JGV, JJGH and FFM. Material preparation and analysis were performed by all authors. The first draft of the manuscript was written by LIPS, JGV and MSL. All authors commented on early versions of the manuscript, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Lorenzo Ismael Perez-Sanchez.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This project has been approved by out institution ethics committee and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All participants signed an informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez-Sanchez, L.I., Gutierrez-Vazquez, J., Satrustegui-Lapetra, M. et al. Ocular biometry through fully refocused steady-state magnetic resonance imaging sequence: reliability and agreement with the IOLMaster® 500. Int Ophthalmol (2021). https://doi.org/10.1007/s10792-021-01748-7

Download citation

Keywords

  • Magnetic resonance imaging
  • Interferometry
  • Eye axial length
  • Anterior chamber