Retinal layers in prolactinoma patients: a spectral-domain optical coherence tomography study



Prolactinoma is a type of pituitary tumour that produces an excessive amount of the hormone prolactin. It is the most common type of hormonally-active pituitary tumour. These tumours can cause ocular complications such as vision loss and visual fields (VF) defect. In this study, we aimed to evaluate the thickness of chorioretinal layers in patients with prolactinoma.


We enrolled 63 eyes of 32 prolactinoma patients and 36 eyes of 18 age and gender-matched healthy controls. All participants underwent complete hormonal and ophthalmological examination, including spectral-domain optical coherence tomography (SD-OCT) and VF test.The complete biochemical response was defined as serum PRL concentration ≤ 20 ng/mL at the time of evaluation.The seven layers were retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), and retinal pigment epithelium (RPE). The results of prolactinoma patients were compared with the control group.


The mean RNFL, GCL, IPL, INL, ONL, and RPE were thinner in prolactinoma patients than the control group (p < 0.05) while OPL was similar between groups (p > 0.05).None of the patients had VF defect.The thickness of retinal layers was similar in patients with and without complete biochemical response (p > 0.05).


To our knowledge, this is the first study that evaluates the thickness of chorioretinal layers in patients with prolactinoma.Most of the layers were thinner than the control group.Therefore, detailed eye assessment should be a routine component of the follow-up visits of prolactinoma patients and further studies related to this condition are required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Miyai K, Ichihara K, Kondo K, Mori S (1986) Asymptomatic hyperprolactinaemia and prolactinoma in the general population–mass screening by paired assays of serum prolactin. Clin Endocrinol (Oxf) 25(5):549–554

    CAS  Article  Google Scholar 

  2. 2.

    Glezer A, Bronstein MD (2015) Prolactinomas. Endocrinol Metab Clin North Am 44(1):71–78.

    Article  PubMed  Google Scholar 

  3. 3.

    Dollar JR, Blackwell RE (1986) Diagnosis and management of prolactinomas. Cancer Metastasis Rev 5(2):125–138

    CAS  Article  Google Scholar 

  4. 4.

    Ciccarelli A, Daly AF, Beckers A (2005) The epidemiology of prolactinomas. Pituitary 8(1):3–6.

    Article  PubMed  Google Scholar 

  5. 5.

    Mann WA (2011) Treatment for prolactinomas and hyperprolactinaemia: a lifetime approach. Eur J Clin Invest 41(3):334–342.

    Article  PubMed  Google Scholar 

  6. 6.

    Mah PM, Webster J (2002) Hyperprolactinemia: etiology, diagnosis, and management. Semin Reprod Med 20(4):365–374.

    Article  PubMed  Google Scholar 

  7. 7.

    Asano S, Ueki K, Suzuki I, Kirino T (2001) Clinical features and medical treatment of male prolactinomas. Acta Neurochir (Wien) 143(5):465–470

    CAS  Article  Google Scholar 

  8. 8.

    Nomikos P, Buchfelder M, Fahlbusch R (2001) Current management of prolactinomas. J Neurooncol 54(2):139–150

    CAS  Article  Google Scholar 

  9. 9.

    Casanueva FF, Molitch ME, Schlechte JA, Abs R, Bonert V, Bronstein MD, Brue T, Cappabianca P, Colao A, Fahlbusch R, Fideleff H, Hadani M, Kelly P, Kleinberg D, Laws E, Marek J, Scanlon M, Sobrinho LG, Wass JA, Giustina A (2006) Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol (Oxf) 65(2):265–273.

    Article  Google Scholar 

  10. 10.

    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    CAS  Article  Google Scholar 

  11. 11.

    Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27(1):45–88.

    Article  PubMed  Google Scholar 

  12. 12.

    Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, Aiello LP (2014) Disorganisation of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol 132(11):1309–1316.

    Article  PubMed  Google Scholar 

  13. 13.

    Invernizzi A, Pellegrini M, Acquistapace A, Benatti E, Erba S, Cozzi M, Cigada M, Viola F, Gillies M, Staurenghi G (2018) Normative data for retinal-layer thickness maps generated by spectral-domain OCT in a white population. Ophthalmol Retina 2 (8):808–815 e801.

  14. 14.

    Staurenghi G, Sadda S, Chakravarthy U, Spaide RF, International Nomenclature for Optical Coherence Tomography P (2014) Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology 121(8):1572–1578.

    Article  PubMed  Google Scholar 

  15. 15.

    Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group (1985). Arch Ophthalmol 103 (12):1796–1806

  16. 16.

    Ikeda H, Yoshimoto T (1995) Visual disturbances in patients with pituitary adenoma. Acta Neurol Scand 92(2):157–160

    CAS  Article  Google Scholar 

  17. 17.

    Bergland R (1969) The arterial supply of the human optic chiasm. J Neurosurg 31(3):327–334.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    McIlwaine GG, Carrim ZI, Lueck CJ, Chrisp TM (2005) A mechanical theory to account for bitemporal hemianopia from chiasmal compression. J Neuroophthalmol 25(1):40–43

    Article  Google Scholar 

  19. 19.

    Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147 (1):64–70 e62.

  20. 20.

    Monteiro ML, Costa-Cunha LV, Cunha LP, Malta RF (2010) Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression. Eye (Lond) 24(8):1382–1390.

    CAS  Article  Google Scholar 

  21. 21.

    Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Ophthalmol Vis Sci 52(11):8527–8533.

    Article  PubMed  Google Scholar 

  22. 22.

    Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S (2006) Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci 47(11):4827–4835.

    Article  PubMed  Google Scholar 

  23. 23.

    Duru N, Ersoy R, Altinkaynak H, Duru Z, Cagil N, Cakir B (2016) Evaluation of retinal nerve fiber layer thickness in acromegalic patients using spectral-domain optical coherence tomography. Semin Ophthalmol 31(3):285–290.

    Article  PubMed  Google Scholar 

  24. 24.

    Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37(24):3509–3529.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    RL R (2005) Visual function in Parkinson’s disease. In: Ebadi MPR (ed) Parkinson’s disease, 1st edn. Sigma, Turkey, pp 229–236

  26. 26.

    Harnois C, Di Paolo T (1990) Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci 31(11):2473–2475

    CAS  PubMed  Google Scholar 

  27. 27.

    Bodis-Wollner I (1990) Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci 13(7):296–302

    CAS  Article  Google Scholar 

  28. 28.

    Lewis MM, Huang X, Nichols DE, Mailman RB (2006) D1 and functionally selective dopamine agonists as neuroprotective agents in Parkinson’s disease. CNS Neurol Disord Drug Targets 5(3):345–353

    CAS  Article  Google Scholar 

  29. 29.

    Jackson GR, Owsley C (2003) Visual dysfunction, neurodegenerative diseases, and aging. Neurol Clin 21(3):709–728

    Article  Google Scholar 

  30. 30.

    Yavas GF, Yilmaz O, Kusbeci T, Ozturk F (2007) The effect of levodopa and dopamine agonists on optic nerve head in Parkinson disease. Eur J Ophthalmol 17(5):812–816

    CAS  Article  Google Scholar 

  31. 31.

    Sink M, Chou J (2012) Prolactinomas and the eye: a clinical case and review. Optom Vis Sci 89(11):e85-94.

    Article  PubMed  Google Scholar 

  32. 32.

    Raverot G, Jacob M, Jouanneau E, Delemer B, Vighetto A, Pugeat M, Borson-Chazot F (2009) Secondary deterioration of visual field during cabergoline treatment for macroprolactinoma. Clin Endocrinol (Oxf) 70(4):588–592.

    CAS  Article  Google Scholar 

  33. 33.

    Chuman H, Cornblath WT, Trobe JD, Gebarski SS (2002) Delayed visual loss following pergolide treatment of a prolactinoma. J Neuroophthalmol 22(2):102–106

    Article  Google Scholar 

Download references


This research received no specific grant from any funding agency in the public, commercial, or not for profit sectors.

Author information



Corresponding author

Correspondence to Berna Evranos Ogmen.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogmen, B.E., Ugurlu, N., Faki, S. et al. Retinal layers in prolactinoma patients: a spectral-domain optical coherence tomography study. Int Ophthalmol (2021).

Download citation


  • Spectral-domain optical coherence tomography (SD-OCT)
  • The retinal nerve fibre layer (RNFL)
  • Prolactinoma
  • Retinal layers
  • Ocular disease