The effect of spleen tyrosine kinase inhibitor R406 on diabetic retinopathy in experimental diabetic rats

Abstract

Purpose

To investigate the effect of spleen tyrosine kinase (Syk) inhibitor R406 on diabetic retinopathy (DR) in diabetic mellitus (DM) rats.

Methods

Rats were randomized into Normal, DM, DM + 5 mg/kg R406 and DM + 10 mg/kg R406 groups. DM rats were established via injection of streptozotocin (STZ). One week after model establishment, rats in treatment groups received 5 mg/kg or 10 mg/kg R406 by gavage administration for 12 weeks consecutively, followed by the detection with hematoxylin-eosin (HE) staining, Evans blue angiography, retinal trypsin digestion assay, Western blotting, immunohistochemistry, TUNEL assay, immunofluorescence assay and quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR).

Results

The retina of DM rats presented different degree of edema, disordered and loose structure, swollen cells with enlarged intercellular space, and dilated and congested capillaries. Besides, the retinal vessels of DM rats showed high fluorescence leakage. However, R406 alleviated the above-mentioned conditions, which was much better with high concentration of R406 (10 mg/kg). R406 also reversed the down-regulations of occludin, claudin-5, ZO-1 and the up-regulation of and VEGF in retinal tissues of DM rats; inhibited retinal cell apoptosis; strengthened retinal cell proliferation; and reduced expressions of IL-1β, IL-6, TNF-α and nuclear p65 NF-κB in retinal tissues. The improvement in all these indexes was much more significant in rats of DM + 10 mg/kg R406 group than in rats of DM + 5 mg/kg R406 group.

Conclusion

Syk inhibitor R406 could attenuate retinal inflammation in DR rats via the repression of NF-κB activation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J (2012) The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 12(1):5–18. https://doi.org/10.12816/0003082

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Harries AD, Satyanarayana S, Kumar AM, Nagaraja SB, Isaakidis P, Malhotra S, Achanta S, Naik B, Wilson N, Zachariah R, Lonnroth K, Kapur A (2013) Epidemiology and interaction of diabetes mellitus and tuberculosis and challenges for care: a review. Public Health Action 3(Suppl 1):S3–S9. https://doi.org/10.5588/pha.13.0024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358. https://doi.org/10.1016/j.preteyeres.2011.05.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kastelan S, Tomic M, Gverovic Antunica A, Salopek Rabatic J, Ljubic S (2013) Inflammation and pharmacological treatment in diabetic retinopathy. Mediat Inflamm 2013:213130. https://doi.org/10.1155/2013/213130

    CAS  Article  Google Scholar 

  5. 5.

    Liu L, Wu X, Liu L, Geng J, Yuan Z, Shan Z, Chen L (2012) Prevalence of diabetic retinopathy in mainland China: a meta-analysis. PLoS ONE 7(9):e45264. https://doi.org/10.1371/journal.pone.0045264

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Taniguchi T, Kobayashi T, Kondo J, Takahashi K, Nakamura H, Suzuki J, Nagai K, Yamada T, Nakamura S, Yamamura H (1991) Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J Biol Chem 266(24):15790–15796

    CAS  PubMed  Google Scholar 

  7. 7.

    Ni B, Hu J, Chen D, Li L, Chen D, Wang J, Wang L (2016) Alternative splicing of spleen tyrosine kinase differentially regulates colorectal cancer progression. Oncol Lett 12(3):1737–1744. https://doi.org/10.3892/ol.2016.4858

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Nakashima H, Natsugoe S, Ishigami S, Okumura H, Matsumoto M, Hokita S, Aikou T (2006) Clinical significance of nuclear expression of spleen tyrosine kinase (Syk) in gastric cancer. Cancer Lett 236(1):89–94. https://doi.org/10.1016/j.canlet.2005.05.022

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yang WS, Chang JW, Han NJ, Lee SK, Park SK (2012) Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-beta1 up-regulation in proximal tubular epithelial cells. Exp Cell Res 318(15):1867–1876. https://doi.org/10.1016/j.yexcr.2012.05.016

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Scott DL (2011) Role of spleen tyrosine kinase inhibitors in the management of rheumatoid arthritis. Drugs 71(9):1121–1132. https://doi.org/10.2165/11591480-000000000-00000

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Al-Harbi NO, Nadeem A, Ahmad SF, Alanazi MM, Aldossari AA, Alasmari F (2019) Amelioration of sepsis-induced acute kidney injury through inhibition of inflammatory cytokines and oxidative stress in dendritic cells and neutrophils respectively in mice: role of spleen tyrosine kinase signaling. Biochimie 158:102–110. https://doi.org/10.1016/j.biochi.2018.12.014

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kitai M, Fukuda N, Ueno T, Endo M, Maruyama T, Abe M, Okada K, Soma M, Matsumoto K (2017) Effects of a spleen tyrosine kinase inhibitor on progression of the lupus nephritis in mice. J Pharmacol Sci 134(1):29–36. https://doi.org/10.1016/j.jphs.2017.02.015

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Vanlandingham PA, Nuno DJ, Quiambao AB, Phelps E, Wassel RA, Ma JX, Farjo KM, Farjo RA (2017) Inhibition of Stat3 by a small molecule inhibitor slows vision loss in a rat model of diabetic retinopathy. Invest Ophthalmol Vis Sci 58(4):2095–2105. https://doi.org/10.1167/iovs.16-20641

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wang M, Wang Y, Xie T, Zhan P, Zou J, Nie X, Shao J, Zhuang M, Tan C, Tan J, Dai Y, Sun J, Li J, Li Y, Shi Q, Leng J, Wang X, Yao Y (2019) Prostaglandin E2/EP2 receptor signalling pathway promotes diabetic retinopathy in a rat model of diabetes. Diabetologia 62(2):335–348. https://doi.org/10.1007/s00125-018-4755-3

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Bukong TN, Iracheta-Vellve A, Gyongyosi B, Ambade A, Catalano D, Kodys K, Szabo G (2016) Therapeutic benefits of spleen tyrosine kinase inhibitor administration on binge drinking-induced alcoholic liver injury, steatosis, and inflammation in mice. Alcohol Clin Exp Res 40(7):1524–1530. https://doi.org/10.1111/acer.13096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Yang WS, Seo JW, Han NJ, Choi J, Lee KU, Ahn H, Lee SK, Park SK (2008) High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: involvement of Syk tyrosine kinase. Am J Physiol Renal Physiol 294(5):F1065–F1075. https://doi.org/10.1152/ajprenal.00381.2007

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Yang WS, Kim JS, Han NJ, Lee MJ, Park SK (2015) Toll-like receptor 4/spleen tyrosine kinase complex in high glucose signal transduction of proximal tubular epithelial cells. Cell Physiol Biochem Int J Expe Cell Physiol Biochem Pharmacol 35(6):2309–2319. https://doi.org/10.1159/000374034

    CAS  Article  Google Scholar 

  18. 18.

    Zhou H, Yue Y, Wang J, Ma Q, Chen Y (2018) Melatonin therapy for diabetic cardiomyopathy: a mechanism involving Syk-mitochondrial complex I-SERCA pathway. Cell Signal 47:88–100. https://doi.org/10.1016/j.cellsig.2018.03.012

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wuopio J, Ostgren CJ, Lanne T, Lind L, Ruge T, Carlsson AC, Larsson A, Nystrom FH, Arnlov J (2018) The association between circulating endostatin and a disturbed circadian blood pressure pattern in patients with type 2 diabetes. Blood Press 27(4):215–221. https://doi.org/10.1080/08037051.2018.1444941

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Rong L, Gu X, Xie J, Zeng Y, Li Q, Chen S, Zou T, Xue L, Xu H, Yin ZQ (2018) Bone marrow CD133(+) stem cells ameliorate visual dysfunction in streptozotocin-induced diabetic mice with early diabetic retinopathy. Cell Transpl 27(6):916–936. https://doi.org/10.1177/0963689718759463

    Article  Google Scholar 

  21. 21.

    Zhu Y, Herlaar E, Masuda ES, Burleson GR, Nelson AJ, Grossbard EB, Clemens GR (2007) Immunotoxicity assessment for the novel Spleen tyrosine kinase inhibitor R406. Toxicol Appl Pharmacol 221(3):268–277. https://doi.org/10.1016/j.taap.2007.03.027

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Alzahrani KS, Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, El-Sherbeeny AM, Alhoshani AR, Alshammari MA, Alotaibi MR, Al-Harbi MM (2019) Inhibition of spleen tyrosine kinase attenuates psoriasis-like inflammation in mice through blockade of dendritic cell-Th17 inflammation axis. Biomed Pharmacother Biomed Pharmacother 111:347–358. https://doi.org/10.1016/j.biopha.2018.12.060

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Kurniawan DW, Jajoriya AK, Dhawan G, Mishra D, Argemi J, Bataller R, Storm G, Mishra DP, Prakash J, Bansal R (2018) Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis. J Controll Release Off J Controll Release Soc 288:227–238. https://doi.org/10.1016/j.jconrel.2018.09.004

    CAS  Article  Google Scholar 

  24. 24.

    Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M, Qu K, Herlaar E, Lau A, Young C, Wong BR, Lovell S, Sun T, Park G, Argade A, Jurcevic S, Pine P, Singh R, Grossbard EB, Payan DG, Masuda ES (2006) R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther 319(3):998–1008. https://doi.org/10.1124/jpet.106.109058

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Arredondo Zamarripa D, Noguez Imm R, Bautista Cortes AM, Vazquez Ruiz O, Bernardini M, Fiorio Pla A, Gkika D, Prevarskaya N, Lopez-Casillas F, Liedtke W, Clapp C, Thebault S (2017) Dual contribution of TRPV4 antagonism in the regulatory effect of vasoinhibins on blood-retinal barrier permeability: diabetic milieu makes a difference. Sci Rep 7(1):13094. https://doi.org/10.1038/s41598-017-13621-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Assmann JC, Muller K, Wenzel J, Walther T, Brands J, Thornton P, Allan SM, Schwaninger M (2017) Isolation and cultivation of primary brain endothelial cells from adult mice. Bio-protocol. https://doi.org/10.21769/bioprotoc.2294

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Imai S, Otsuka T, Naito A, Shimazawa M, Hara H (2017) Triamcinolone acetonide suppresses inflammation and facilitates vascular barrier function in human retinal microvascular endothelial cells. Curr Neurovascu Res 14(3):232–241. https://doi.org/10.2174/1567202614666170619081929

    CAS  Article  Google Scholar 

  28. 28.

    Paine SK, Mondal LK, Borah PK, Bhattacharya CK, Mahanta J (2017) Pro- and antiangiogenic VEGF and its receptor status for the severity of diabetic retinopathy. Mol Vis 23:356–363

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Khalaf N, Helmy H, Labib H, Fahmy I, El Hamid MA, Moemen L (2017) Role of angiopoietins and Tie-2 in Diabetic Retinopathy. Electron Phys 9(8):5031–5035. https://doi.org/10.19082/5031

    Article  Google Scholar 

  30. 30.

    Kazerounian S, Duquette M, Reyes MA, Lawler JT, Song K, Perruzzi C, Primo L, Khosravi-Far R, Bussolino F, Rabinovitz I, Lawler J (2011) Priming of the vascular endothelial growth factor signaling pathway by thrombospondin-1, CD36, and spleen tyrosine kinase. Blood 117(17):4658–4666. https://doi.org/10.1182/blood-2010-09-305284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 52(2):1156–1163. https://doi.org/10.1167/iovs.10-6293

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Dasgupta N, Thakur BK, Ta A, Dutta P, Das S (2017) Suppression of spleen tyrosine kinase (Syk) by histone deacetylation promotes, whereas BAY61-3606, a synthetic Syk Inhibitor abrogates colonocyte apoptosis by ERK activation. J Cell Biochem 118(1):191–203. https://doi.org/10.1002/jcb.25625

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Qiao Y, Xixi T, Li M, Shengyu L, Yufeng C, Meiting X, Yahui H, Pengfei Z, Guangfeng L, Yue S (2018) Spleen tyrosine kinase promotes NLR family pyrin domain containing 3 inflammasome-mediated IL-1β secretion via c-Jun N-terminal kinase activation and cell apoptosis during diabetic nephropathy. Mol Med Rep 18:1995–2008

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Modi TG, Chalishazar M, Kumar M (2018) Expression of Ki-67 in odontogenic cysts: a comparative study between odontogenic keratocysts, radicular cysts and dentigerous cysts. J Oral Maxillofac Pathol JOMFP 22(1):146. https://doi.org/10.4103/jomfp.JOMFP_94_16

    Article  PubMed  Google Scholar 

  35. 35.

    Repana K, Papazisis K, Foukas P, Valeri R, Kortsaris A, Deligiorgi E, Kyriakidis D (2006) Expression of Syk in invasive breast cancer: correlation to proliferation and invasiveness. Anticancer Res 26(6C):4949–4954

    CAS  PubMed  Google Scholar 

  36. 36.

    Cortez M, Carmo LS, Rogero MM, Borelli P, Fock RA (2013) A high-fat diet increases IL-1, IL-6, and TNF-alpha production by increasing NF-kappaB and attenuating PPAR-gamma expression in bone marrow mesenchymal stem cells. Inflammation 36(2):379–386. https://doi.org/10.1007/s10753-012-9557-z

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Cui S, Bilitewski U (2013) Anti-inflammatory effect of Syk inhibitor in LPS stimulated macrophages. Xi bao yu fen zi mian yi xue za zhi Chin J Cell Mol Immunol 29(10):1024–1027

    CAS  Google Scholar 

  38. 38.

    Ishizuka F, Shimazawa M, Inoue Y, Nakano Y, Ogishima H, Nakamura S, Tsuruma K, Tanaka H, Inagaki N, Hara H (2013) Toll-like receptor 4 mediates retinal ischemia/reperfusion injury through nuclear factor-κB and spleen tyrosine kinase activation. Investig Ophthalmol Vis Sci 54(8):5807–5816

    CAS  Article  Google Scholar 

  39. 39.

    Adhi M, Cashman SM, Kumar-Singh R (2013) Adeno-associated virus mediated delivery of a non-membrane targeted human soluble CD59 attenuates some aspects of diabetic retinopathy in mice. PLoS ONE 8(10):e79661. https://doi.org/10.1371/journal.pone.0079661

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    National Research Council (2011) Guide for the care and use of laboratory animals: Eighth Edition. Washington, DC: The National Academies Press. https://doi.org/10.17226/12910

Download references

Acknowledgements

Not applicalbe.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rui-Xue Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

The study conformed to the Guide for the Care and Use of Laboratory Animals [40], and all animal experiments were conducted with the approval of Medical Ethics Committee of Laboratory Animals in the First Hospital of Shijiazhuang City.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, X., Sun, Z., Ren, Q. et al. The effect of spleen tyrosine kinase inhibitor R406 on diabetic retinopathy in experimental diabetic rats. Int Ophthalmol (2020). https://doi.org/10.1007/s10792-020-01422-4

Download citation

Keywords

  • Diabetic retinopathy
  • Spleen tyrosine kinase
  • R406
  • NF-κB