Inter- and intraobserver repeatability and reproducibility of choroidal thickness measurements using two different methods

  • Angelakis Malamas
  • Nikolaos Dervenis
  • Vasileios Kilintzis
  • Angeliki Chranioti
  • Fotis Topouzis
Original Paper
  • 17 Downloads

Abstract

Purpose

To measure the inter- and intraobserver repeatability and reproducibility of choroidal thickness measurements taken by the enhanced depth imaging of spectral-domain optical coherence tomography (EDI-OCT) in randomly selected subjects using two different protocols.

Methods

Twenty subjects of the Thessaloniki Eye Study database were randomly selected. The participants underwent EDI-OCT, and the choroidal thickness was measured on EDI images using two different protocols. All images were assessed by two examiners independently in two sessions in different days.

Results

The interobserver intraclass correlation coefficient (ICC) for average choroidal thickness was 0.944. The average ICC for central, Cmin, and Cmax choroidal thickness was 0.899, 0.863, and 0.955, respectively. The interobserver ICC for average choroidal volume was 0.932. Intraobserver repeatability ICC for grader 1 ranged between 0.925 and 0.9720 and for grader 2 between 0.913 and 0.994.

Conclusion

Choroidal thickness measurements by EDI-OCT showed a high inter- and intraobserver reproducibility.

Keywords

Choroidal thickness EDI Repeatability 

Notes

Acknowledgements

We would like to thank the ophthalmic technicians of the LaRCAO, 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Irini Lachoura, Evgenia Zamba, Evmorfia Amiridou, Grigoria Tzoanou and Anastasia Rapti for their work and professionalism that greatly assisted the research. We are also grateful to Fei Yu from the Department of Biostatistics, UCLA, who provided advice that greatly assisted the research.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional research committee and with the 1964 Declaration of Helsinki comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Hayreh SS (1975) Segmental nature of the choroidal vasculature. Br J Ophthalmol 1975(59):631CrossRefGoogle Scholar
  2. 2.
    Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29(2):144–168.  https://doi.org/10.1016/j.preteyeres.2009.12.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Ross A, Ross AH, Mohamed Q (2011) Review and update of central serous chorioretinopathy. Curr Opin Ophthalmol 2011(22):166–173CrossRefGoogle Scholar
  4. 4.
    Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 2009(29):1469–1473CrossRefGoogle Scholar
  5. 5.
    Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 2011(118):840–845CrossRefGoogle Scholar
  6. 6.
    Ting DS, Ng WY, Ng SR, Tan SP, Yeo IY, Mathur R, Chan CM et al (2016) Choroidal thickness changes in age-related macular degeneration and polypoidal choroidal vasculopathy: a 12-month prospective study. Am J Ophthalmol 164:128.  https://doi.org/10.1016/j.ajo.2015.12.024 CrossRefPubMedGoogle Scholar
  7. 7.
    Yannuzzi LA, Sorenson J, Spaide RF, Lipson B (1990) Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina 1990(10):1–8CrossRefGoogle Scholar
  8. 8.
    Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S (2011) Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 2011(249):1123–1128CrossRefGoogle Scholar
  9. 9.
    Zheng F, Gregory G, Schaal KB, Legarreta AD, Miller AR, Roisman L et al (2016) Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging. Invest Ophthalmol Vis Sci 57(14):6256–6264.  https://doi.org/10.1167/iovs.16-20161 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Koizumi H, Kano M, Yamamoto A, Saito M, Maruko Ι, Sekiryu T et al (2016) Subfoveal choroidal thickness during aflibercept therapy for neovascular age-related macular degeneration: 12-month results. Ophthalmology 123(3):617–624.  https://doi.org/10.1016/j.ophtha.2015.10.039 CrossRefPubMedGoogle Scholar
  11. 11.
    Fong AH, Li KK, Wong D (2011) Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease. Retina 2011(31):502–509CrossRefGoogle Scholar
  12. 12.
    Read RW, Rao NA, Cunningham ET (2000) Vogt-Koyanagi-Harada disease. Curr Opin Ophthalmol 2000(11):437–442CrossRefGoogle Scholar
  13. 13.
    Maruko I, Iida T, Sugano Y, Go S, Sekiryu T (2011) Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina 2011(31):510–517CrossRefGoogle Scholar
  14. 14.
    Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 2009(148):445–450CrossRefGoogle Scholar
  15. 15.
    Aoyagi R, Hayashi T, Masai A, Mitooka K, Gekka T, Kozaki K et al (2012) Subfoveal choroidal thickness in multiple evanescent white dot syndrome. Clin Exp Optom 2012(95):212–217CrossRefGoogle Scholar
  16. 16.
    Comyn O, Heng LZ, Ikeji F, Bibi K, Hykin PG, Bainbridge JW et al (2012) Repeatability of spectralis OCT measurements of macular thickness and volume in diabetic macular edema. Invest Ophthalmol Vis Sci 53(12):7754–7759.  https://doi.org/10.1167/iovs.12-10895 CrossRefPubMedGoogle Scholar
  17. 17.
    Bressler SB, Edwards AR, Chalam KV, Bressler NM, Glassman AR, Jaffe GJ et al (2014) Reproducibility of spectral-domain optical coherence tomography retinal thickness measurements and conversion to equivalent time-domain metrics in diabetic macular edema. JAMA Ophthalmol 132(9):1113–1122.  https://doi.org/10.1001/jamaophthalmol.2014.1698 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K et al (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 2011(52):5536–5540CrossRefGoogle Scholar
  19. 19.
    Rahman W, Chen FK, Yeoh J, Patel P, Tufail A, Da Cruz L (2011) Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 2011(52):2267–2271CrossRefGoogle Scholar
  20. 20.
    Chhablani J, Barteseli G, Wang H, El-Emam S, Kozak I, Doede AL et al (2012) Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 53(4):2274–2280.  https://doi.org/10.1167/iovs.12-9435 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yamashita T, Yamashita T, La ShirasawDa Cruz M, Arimura N, Terasaki H, Sakamoto T (2012) Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. Invest Ophthalmol Vis Sci 53(3):1102–1107.  https://doi.org/10.1167/iovs.11-8836 CrossRefPubMedGoogle Scholar
  22. 22.
    Shao L, Xu L, Zhang JS, You QS, Chen CX et al (2015) Subfoveal choroidal thickness and cataract: the Beijing Eye Study 2011. Invest Ophthalmol Vis Sci 56(2):810–815.  https://doi.org/10.1167/iovs.14-15736 CrossRefPubMedGoogle Scholar
  23. 23.
    Karaca EE, Özdek Ş, Yalçin NG, Ekici F (2014) Reproducibility of choroidal thickness measurements in healthy Turkish subjects. Eur J Ophthalmol 24(2):202–208.  https://doi.org/10.5301/ejo.5000351 CrossRefPubMedGoogle Scholar
  24. 24.
    Shao L, Xu L, Chen CX, Yang LH, Du KF, Wang S et al (2013) Reproducibility of subfoveal choroidal thickness measurements with enhanced depth imaging by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54(1):230–233.  https://doi.org/10.1167/iovs.12-10351 CrossRefPubMedGoogle Scholar
  25. 25.
    Patel PJ, Chen FK, Ikeji F, Xing W, Bunce C, Da Cruz L et al (2008) Repeatability of stratus optical coherence tomography measures in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 49(3):1084–1088.  https://doi.org/10.1167/iovs.07-1203 CrossRefPubMedGoogle Scholar
  26. 26.
    Patel PJ, Chen FK, Ikeji F, Tufail A (2011) Intersession repeatability of optical coherence tomography measures of retinal thickness in early age-related macular degeneration. Acta Ophthalmol 89(3):229–234.  https://doi.org/10.1111/j.1755-3768.2009.01659.x CrossRefPubMedGoogle Scholar
  27. 27.
    Kim JS, Knickelbein JE, Jaworski L, Kaushal P, Vitale S, Nussenblatt RB et al (2016) Enhanced depth imaging optical coherence tomography in uveitis: an intravisit and interobserver reproducibility study. Am J Ophthalmol 164:49–56.  https://doi.org/10.1016/jajo.2016.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sim DA, Keane PA, Mehta H, Fung S, Zarranz-Ventura J, Fruttiger M et al (2013) Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography. Invest Ophthalmol Vis Sci 54(4):2893–2901.  https://doi.org/10.1167/iovs.12-11.085 CrossRefPubMedGoogle Scholar
  29. 29.
    Hu Z, Wu X, Ouyang Y, Ouyang Y, Sadda SR (2013) Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans. Investig Ophthalmol Vis Sci 54(3):1722–1729CrossRefGoogle Scholar
  30. 30.
    Tian J, Marziliano P, Baskaran M, Tun TA, Aung T (2013) Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images. Biomed Opt Express 4(3):397–411CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lu H, Boonarpha N, Kwong MT, Zheng Y (2013) Automated segmentation of the choroid in retinal optical coherence tomography images. In: IEEE 35th Annual Inter-national Conference of the Engineering in Medicine and Biology Society (EMBC). p 5869–72Google Scholar
  32. 32.
    Kajίc V, Esmaeelpour M, Povǎzay B, Marshall D, Rosin PL, Drexler W (2012) Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express 3(1):86–103CrossRefGoogle Scholar
  33. 33.
    Danesh H, Kafieh R, Rabbani H, Hajizadeh F. (2014) Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts. Comput Math Methods MedGoogle Scholar
  34. 34.
    Alonso-Caneiro D, Read SA, Collins MJ (2013) Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed Opt Express 4(12):2795–2812CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Twa MD, Shulle KL, Chiu SJ, Farsiu S, Berntsen DA (2016) Validation of macular choroidal thickness measuremesmaeelpour ents from automated SD-OCT image segmentation. Optom Vis Sci 93(11):1387–1398CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gupta P, Jing T, Marziliano P, Cheung CY, Baskaran M, Lamoureux EL et al (2015) Distribution and determinants of choroidal thickness and volume using automated segmentation software in a population-based study. Am J Ophthalmol 159(2):293.  https://doi.org/10.1016/j.ajo.2014.10.034 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang L, Lee K, Niemeijer M, Mullins RF, Sonka M, Abràmoff MD (2012) Automated segmentation of the choroid from clinical SD-OCT. Invest Ophthalmol Vis Sci 53(12):7510–7519.  https://doi.org/10.1167/iovs.12-10311 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Topouzis F, Coleman A, Harris A, Anastasopoulos E, Yu F, Koskosas A et al (2006) Prevalence of age-related macular degeneration in Greece: the Thessaloniki Eye Study. Am J Ophthalmol 142(6):1076–1079CrossRefPubMedGoogle Scholar
  39. 39.
    Springelkamp H, Lee K, Wolfs RC, Buitendijk GH, Ramdas WD, Hofman A et al (2014) Population-based evaluation of retinal nerve fiber layer, retinal ganglion cell layer, and inner plexiform layer as a diagnostic tool for glaucoma. Invest Ophthalmol Vis Sci 55(12):8428–8438CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Group E (1991) Early Treatment Diabetic Retinopathy Study Research Group.ETDRS report number 10. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. Ophthalmology 1991(98):786–806Google Scholar
  41. 41.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986(1):307–310CrossRefGoogle Scholar
  42. 42.
    Guyer DR, Puliafito CA, Mones JM, Friedman E, Chang W, Verdooner SR (1992) Digital indocyanine-green angiography in chorioretinal disorders. Ophthalmology 1992(99):287–291CrossRefGoogle Scholar
  43. 43.
    Adhi M, Liu JJ, Qavi AH, Grulkowski I, Lu CD, Mohler KJ et al (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157(6):1272.  https://doi.org/10.1016/j.ajo.2014.02.034 CrossRefPubMedGoogle Scholar
  44. 44.
    Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500.  https://doi.org/10.1016/j.ajo2008.05.032 CrossRefPubMedGoogle Scholar
  45. 45.
    Shin JW, Shin YU, Lee BR (2012) Choroidal thickness and volume mapping by a six radial scan protocol on spectral-domain optical coherence tomography. Ophthalmology 119(5):1017–1023.  https://doi.org/10.1016/j.ophtha.2011.10.029 CrossRefPubMedGoogle Scholar
  46. 46.
    Chhablani J, Barteseli G, Bartsch DU, Kozak I, Wang H, El-Emam S et al (2013) Influence of scanning density on macular choroidal volume measurement using spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251(5):1303–1309.  https://doi.org/10.1007/s00417-012-2188-0 CrossRefPubMedGoogle Scholar
  47. 47.
    Margolis R, Spade RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 2009(147):811–815CrossRefGoogle Scholar
  48. 48.
    Ding X, Li J, Zeng J, Ma W, Liu R et al (2011) Choroidal thickness in healthy Chinese subjects. Invest Ophthalmol Vis Sci 2011(52):9555CrossRefGoogle Scholar
  49. 49.
    Vupparaboina KK, Nizampatnam S, Chhablani J, Richhariya A, Jana S (2015) Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section. Comput Med Imaging Graph 3:315–327.  https://doi.org/10.1016/j.compmedimag.2015.09.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Angelakis Malamas
    • 1
  • Nikolaos Dervenis
    • 1
  • Vasileios Kilintzis
    • 1
  • Angeliki Chranioti
    • 1
  • Fotis Topouzis
    • 1
  1. 1.Department of OphthalmologyAristotle University of Thessaloniki, AHEPA HospitalThessalonikiGreece

Personalised recommendations