International Ophthalmology

, Volume 39, Issue 4, pp 765–775 | Cite as

Corneal densitometry after accelerated corneal collagen cross-linking in progressive keratoconus

  • Myriam Böhm
  • Mehdi Shajari
  • Matthias Remy
  • Thomas KohnenEmail author
Original Paper



To analyze changes in corneal densitometry 3 months after accelerated corneal collagen cross-linking (CXL) measured with Scheimpflug tomography.


In this study we reviewed charts and anterior segment data of patients who had undergone accelerated pulsed epithelium-off CXL (30 mW/cm2 for 4 min, 8 min total radiation time) for treatment of progressive keratoconus in the Department of Ophthalmology, Goethe University, Frankfurt, Germany. Visual, topographic, pachymetric and densitometric data were extracted before surgery and at the 3-month follow-up. Corneal densitometry measurements from different corneal layers and zones obtained using Scheimpflug tomography (Pentacam HR, Oculus).


The study investigated 12 eyes of 12 patients. The anterior (120 μm) stromal layer within the 0.0 to 2.0 mm and 2.0 to 6.0 mm concentric zones showed a significant elevation of mean densitometry 3 months post-surgery (P = 0.045; P = 0.015) compared to baseline. A mean stromal demarcation line was apparent at a depth of 203.00 μm ± 13.53 (SD). After accelerated CXL, no change in mean corrected distance visual acuity (LogMAR) was observed but a thinning of the cornea measured by a significant reduction in central pachymetry (μm).


Accelerated CXL results in an increase in corneal densitometry, particularly in the anterior stromal layer within the two central concentric zones (0.0 to 2.0 mm and 2.0 to 6.0 mm) of the cornea at 3 months postoperatively. The changes in corneal densitometry of the anterior stromal layer did not correlate with postoperative visual acuity or central pachymetry.


Corneal collagen cross-linking Densitometry Scheimpflug tomography Keratoconus 



Balanced salt solution


Corrected distance visual acuity


Corneal collagen cross-linking




Grayscale unit


Logarithm of the minimum angle of resolution


Optical coherence tomography


Uncorrected distance visual acuity





Myriam Böhm: none; Mehdi Shajari: Oculus; Matthias Remy: Avedro Inc.: Travel has been funded; Thomas Kohnen receives grant support from Hoya, J&J Vision (Abbott), Novartis (Alcon), Oculentis, Oculus, Schwind, and Zeiss; and is a consultant to Geuder, J&J Vision (Abbott), Novartis (Alcon), Oculus, Santen, Schwind, STAAR, TearLab, Thea Pharma, Thieme Compliance, Ziemer, and Zeiss.

Compliance with ethical standards

Conflict of interest

Myriam Böhm and Mehdi Shajari declare that they have no conflict of interest. Matthias Remy has received a travel honorarium from Avedro (Waltham, MA 02451, USA).

Human and animal rights

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

No informed consent was obtained from patients since this was a retrospective study and data were anonymized. This is in accordance with the ethical vote obtained from the local ethics committee.


  1. 1.
    Sykakis E, Karim R, Evans JR, Bunce C, Amissah-Arthur KN, Patwary S, McDonnell PJ, Hamada S (2015) Corneal collagen cross-linking for treating keratoconus. The Cochrane database of systematic reviews (3):Cd010621.
  2. 2.
    Raiskup F, Lenk J, Herber R, Gatzioufas Z, Sporl E (2017) Therapeutic options in keratoconus. Klin Monbl Augenheilkd. Google Scholar
  3. 3.
    Raiskup F, Velika V, Vesela M, Sporl E (2015) Cross-linking in keratoconus: “Epi-off” or “Epi-on”? Klin Monbl Augenheilkd 232(12):1392–1396. CrossRefGoogle Scholar
  4. 4.
    Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135(5):620–627CrossRefGoogle Scholar
  5. 5.
    Wernli J, Schumacher S, Spoerl E, Mrochen M (2013) The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci 54(2):1176–1180. CrossRefGoogle Scholar
  6. 6.
    Zygoura V, Alio del Barrio J, Gatzioufas Z, Saw V, Raiskup F (2015) Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol 159(1):211–212. CrossRefGoogle Scholar
  7. 7.
    Kymionis GD, Tsoulnaras KI, Grentzelos MA, Liakopoulos DA, Tsakalis NG, Blazaki SV, Paraskevopoulos TA, Tsilimbaris MK (2014) Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol 158(4):671CrossRefGoogle Scholar
  8. 8.
    Webb JN, Su JP, Scarcelli G (2017) Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy. J Cataract Refract Surg 43(11):1458–1463. CrossRefGoogle Scholar
  9. 9.
    Males JJ, Viswanathan D (2018) Comparative study of long-term outcomes of accelerated and conventional collagen crosslinking for progressive keratoconus. Eye 32(1):32–38. CrossRefGoogle Scholar
  10. 10.
    Woo JH, Iyer JV, Lim L, Hla MH, Mehta JS, Chan CM, Tan DT (2017) Conventional versus accelerated collagen cross-linking for keratoconus: a comparison of visual, refractive, topographic and biomechanical outcomes. Open Ophthalmol J 11:262–272. CrossRefGoogle Scholar
  11. 11.
    Raiskup F, Theuring A, Pillunat LE, Spoerl E (2015) Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: 10-year results. J Cataract Refract Surg 41(1):41–46. CrossRefGoogle Scholar
  12. 12.
    Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE (2006) Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg 32(2):279–283. CrossRefGoogle Scholar
  13. 13.
    Baumeister M, Klaproth OK, Gehmlich J, Buhren J, Kohnen T (2009) Changes in corneal first-surface wavefront aberration after corneal collagen cross-linking in keratoconus. Klin Monbl Augenheilkd 226(9):752–756. CrossRefGoogle Scholar
  14. 14.
    Koller T, Pajic B, Vinciguerra P, Seiler T (2011) Flattening of the cornea after collagen crosslinking for keratoconus. J Cataract Refract Surg 37(8):1488–1492. CrossRefGoogle Scholar
  15. 15.
    Asri D, Touboul D, Fournie P, Malet F, Garra C, Gallois A, Malecaze F, Colin J (2011) Corneal collagen crosslinking in progressive keratoconus: multicenter results from the French national reference center for keratoconus. J Cataract Refract Surg 37(12):2137–2143. CrossRefGoogle Scholar
  16. 16.
    Seiler TG, Schmidinger G, Fischinger I, Koller T, Seiler T (2013) Complications of corneal cross-linking. Ophthalmologe 110(7):639–644. CrossRefGoogle Scholar
  17. 17.
    Mazzotta C, Balestrazzi A, Baiocchi S, Traversi C, Caporossi A (2007) Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation. Clinical Exp Ophthalmol 35(6):580–582. CrossRefGoogle Scholar
  18. 18.
    Raiskup F, Hoyer A, Spoerl E (2009) Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg 25(9):S824–S828. CrossRefGoogle Scholar
  19. 19.
    Greenstein SA, Fry KL, Bhatt J, Hersh PS (2010) Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: scheimpflug and biomicroscopic analysis. J Cataract Refract Surg 36(12):2105–2114. CrossRefGoogle Scholar
  20. 20.
    Lopes B, Ramos I, Ambrosio R Jr (2014) Corneal densitometry in keratoconus. Cornea 33(12):1282–1286. CrossRefGoogle Scholar
  21. 21.
    Pircher N, Pachala M, Prager F, Pieh S, Schmidinger G (2015) Changes in straylight and densitometry values after corneal collagen crosslinking. J Cataract Refract Surg 41(5):1038–1043. CrossRefGoogle Scholar
  22. 22.
    Kohnen T, Neuhann T, Knorz MC (2014) Evaluation and quality assurance of refractive surgical interventions by the German Ophthalmology Society and the German Professional Association of Ophthalmologists (status 2014). Klin Monbl Augenheilkd 231(6):642–650. CrossRefGoogle Scholar
  23. 23.
    Accelerated cross-linking with Pulsed illumination (2013). Clinical Update & Research News Volume 3(1): 1–4Google Scholar
  24. 24.
    Wollensak G, Wilsch M, Spoerl E, Seiler T (2004) Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea 23(5):503–507CrossRefGoogle Scholar
  25. 25.
    Wollensak G, Spoerl E, Wilsch M, Seiler T (2004) Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea 23(1):43–49CrossRefGoogle Scholar
  26. 26.
    Wilson SE, Kim WJ (1998) Keratocyte apoptosis: implications on corneal wound healing, tissue organization, and disease. Invest Ophthalmol Vis Sci 39(2):220–226Google Scholar
  27. 27.
    Vinciguerra P, Albe E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D (2009) Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116(3):369–378. CrossRefGoogle Scholar
  28. 28.
    Netto MV, Mohan RR, Ambrosio R Jr, Hutcheon AE, Zieske JD, Wilson SE (2005) Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea 24(5):509–522CrossRefGoogle Scholar
  29. 29.
    Kim BZ, Jordan CA, McGhee CNJ, Patel DV (2016) Natural history of corneal haze after corneal collagen crosslinking in keratoconus using Scheimpflug analysis. J Cataract Refract Surg 42(7):1053–1059. CrossRefGoogle Scholar
  30. 30.
    Steven P, Hovakimyan M, Guthoff RF, Huttmann G, Stachs O (2010) Imaging corneal crosslinking by autofluorescence 2-photon microscopy, second harmonic generation, and fluorescence lifetime measurements. J Cataract Refract Surg 36(12):2150–2159. CrossRefGoogle Scholar
  31. 31.
    Kamaev P, Friedman MD, Sherr E, Muller D (2012) Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 53(4):2360–2367. CrossRefGoogle Scholar
  32. 32.
    Marshall J HP, Muller D (2013) Corneal collagen cross-linking; past, present, future [ebook]Google Scholar
  33. 33.
    Koller T, Schumacher S, Fankhauser F 2nd, Seiler T (2013) Riboflavin/ultraviolet a crosslinking of the paracentral cornea. Cornea 32(2):165–168. CrossRefGoogle Scholar
  34. 34.
    Moramarco A, Iovieno A, Sartori A, Fontana L (2015) Corneal stromal demarcation line after accelerated crosslinking using continuous and pulsed light. J Cataract Refract Surg 41(11):2546–2551. CrossRefGoogle Scholar
  35. 35.
    Moineau N, Sauvan L, Benichou J, Ho Wang Yin G, Hoffart L (2017) High-irradiance accelerated corneal collagen crosslinking for the treatment of keratoconus: a retrospective study. J Fr Ophtalmol 40(4):319–328. CrossRefGoogle Scholar
  36. 36.
    Toker E, Cerman E, Ozcan DO, Seferoglu OB (2017) Efficacy of different accelerated corneal crosslinking protocols for progressive keratoconus. J Cataract Refract Surg 43(8):1089–1099. CrossRefGoogle Scholar
  37. 37.
    Mita M, Waring GOt, Tomita M (2014) High-irradiance accelerated collagen crosslinking for the treatment of keratoconus: six-month results. J Cataract Refract Surg 40(6):1032–1040. CrossRefGoogle Scholar
  38. 38.
    Greenstein SA, Shah VP, Fry KL, Hersh PS (2011) Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: 1-year results. J Cataract Refract Surg 37(4):691–700. CrossRefGoogle Scholar
  39. 39.
    Koller T, Iseli HP, Hafezi F, Vinciguerra P, Seiler T (2009) Scheimpflug imaging of corneas after collagen cross-linking. Cornea 28(5):510–515. CrossRefGoogle Scholar
  40. 40.
    Grewal DS, Brar GS, Jain R, Sood V, Singla M, Grewal SP (2009) Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus: 1-year analysis using Scheimpflug imaging. J Cataract Refract Surg 35(3):425–432. CrossRefGoogle Scholar
  41. 41.
    Vinciguerra P, Albe E, Romano MR, Sabato L, Trazza S (2012) Stromal opacity after cross-linking. J Refract Surg 28(3):165. CrossRefGoogle Scholar
  42. 42.
    Seiler T, Hafezi F (2006) Corneal cross-linking-induced stromal demarcation line. Cornea 25(9):1057–1059. CrossRefGoogle Scholar
  43. 43.
    Bottos KM, Dreyfuss JL, Regatieri CV, Lima-Filho AA, Schor P, Nader HB, Chamon W (2008) Immunofluorescence confocal microscopy of porcine corneas following collagen cross-linking treatment with riboflavin and ultraviolet A. J Refract Surg 24(7):S715–719Google Scholar
  44. 44.
    Wollensak G, Aurich H, Pham DT, Wirbelauer C (2007) Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg 33(3):516–521. CrossRefGoogle Scholar
  45. 45.
    Dohlman CH, Hedbys BO, Mishima S (1962) The swelling pressure of the corneal stroma. Investig Ophthalmol 1:158–162Google Scholar
  46. 46.
    Wollensak G, Iomdina E, Dittert DD, Herbst H (2007) Wound healing in the rabbit cornea after corneal collagen cross-linking with riboflavin and UVA. Cornea 26(5):600–605. CrossRefGoogle Scholar
  47. 47.
    Mazzotta C, Traversi C, Baiocchi S, Caporossi O, Bovone C, Sparano MC, Balestrazzi A, Caporossi A (2008) Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol 146(4):527–533. CrossRefGoogle Scholar
  48. 48.
    Mazzotta C, Baiocchi S, Caporossi O, Buccoliero D, Casprini F, Caporossi A, Balestrazzi A (2008) Confocal microscopy identification of keratoconus associated with posterior polymorphous corneal dystrophy. J Cataract Refract Surg 34(2):318–321. CrossRefGoogle Scholar
  49. 49.
    Michelacci YM (2003) Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res 36(8):1037–1046CrossRefGoogle Scholar
  50. 50.
    Koc M, Uzel MM, Tekin K, Kosekahya P, Ozulken K, Yilmazbas P (2016) Effect of preoperative factors on visual acuity, corneal flattening, and corneal haze after accelerated corneal crosslinking. J Cataract Refract Surg 42(10):1483–1489. CrossRefGoogle Scholar
  51. 51.
    Wollensak G, Hammer T, Herrmann CI (2008) Haze or calcific band keratopathy after crosslinking treatment? Ophthalmologe 105(9):864–865. CrossRefGoogle Scholar
  52. 52.
    Corbett MC, Prydal JI, Verma S, Oliver KM, Pande M, Marshall J (1996) An in vivo investigation of the structures responsible for corneal haze after photorefractive keratectomy and their effect on visual function. Ophthalmology 103(9):1366–1380CrossRefGoogle Scholar
  53. 53.
    Shetty R, Agrawal A, Deshmukh R, Kaweri L, Rao HL, Nagaraja H, Jayadev C (2017) Effect of post crosslinking haze on the repeatability of Scheimpflug-based and slit-scanning imaging devices. Indian J Ophthalmol 65(4):305–310. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyGoethe UniversityFrankfurt am MainGermany

Personalised recommendations