International Ophthalmology

, Volume 38, Issue 1, pp 83–91 | Cite as

Impact of laser pulse duration on the reduction of intraocular pressure during selective laser trabeculoplasty

  • Spela Stunf Pukl
  • Brigita Drnovšek-Olup
Original Paper



To evaluate the efficacy of selective laser trabeculoplasty (SLT) to lower intraocular pressure (IOP) in patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) or ocular hypertension (OHT), when performed with laser pulse duration of 1 ns compared with standard 3–5 ns.


Bilateral SLT with a 532 nm Q-switched neodymium-doped yttrium aluminium garnet laser was conducted in 30 patients (60 eyes) with POAG (n = 5), NTG (n = 2) or OHT (n = 23). Pulse duration was 1 ns in the right eye (30 eyes; cases) and 3–5 ns in all left eyes (controls). Main outcome measures were IOP at 1 h, 1 day, 8 weeks and 6 months, and the rate of adverse ocular tissue reactions in all eyes.


Mean 1 ns and 3–5 ns SLT IOPs were 24.1 and 24.3 mmHg, respectively, at baseline. No statistically significant difference in mean 1 ns and 3–5 ns SLT IOP was observed at 1 h (P = 0.761), 1 day (P = 0.758), 8 weeks (P = 0.352) and 6 months postoperatively (P = 0.879). No significant difference in postoperative anterior chamber inflammation was observed between the eyes (P = 0.529). Treatment with both laser pulse durations resulted in minor ultrastructural changes in the drainage angle.


SLT performed with a 1 ns laser pulse duration does not appear to be inferior to SLT performed with the standard 3–5 ns duration at lowering IOP in treatment-naïve patients with POAG, NTG or OHT.


Intraocular pressure Trabeculoplasty Q-switched lasers 


Financial disclosure

Prof. Brigita Drnovšek-Olup, MD PhD is a medical consultant for Optotek d.o.o, Slovenia.

Compliance with ethical standards

Conflict of interest

Author Spela Stunf Pukl declares that she has no conflict of interest. Author Brigita Drnovšek-Olup is a medical consultant for Optotek.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Quigley HA (2011) Glaucoma. Lancet 377:1367–1377CrossRefPubMedGoogle Scholar
  2. 2.
    European Glaucoma Society (2014) Terminology and guidelines for glaucoma, 4th edn, p 164. Accessed 21 Jan 2016
  3. 3.
    El Mallah MK, Walsh MM, Stinnett SS et al (2010) Selective laser trabeculoplasty reduces mean IOP and IOP variation in normal tension glaucoma patients. Clin Ophthalmol 4:889–893PubMedPubMedCentralGoogle Scholar
  4. 4.
    Latina MA, Sibayan SA, Shin DH et al (1998) Q-switched 5B2-nm Nd:YAG laser trabeculoplasty (selective laser trabeculoplasty). Ophthalmology 105:2082–2090CrossRefPubMedGoogle Scholar
  5. 5.
    Damji KF, Shah KC, Rock WJ et al (1999) Selective laser trabeculoplasty v argon laser trabeculoplasty: a prospective randomised clinical trial. Br J Ophthalmol 83:718–722CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bovell AM, Damji KF, Hodge WG et al (2011) Long term effects on the lowering of intraocular pressure: selective laser or argon laser trabeculoplasty. Can J Ophthalmol 46:408–413CrossRefPubMedGoogle Scholar
  7. 7.
    Kramer TR, Noecker RJ (2001) Comparison of the morphologic changes after selective laser trabeculoplasty and argon laser trabeculoplasty in human eye bank eyes. Ophthalmology 2001 108:773–779Google Scholar
  8. 8.
    McAlinden C (2014) Selective laser trabeculoplasty (SLT) vs other treatment modalities for glaucoma: systematic review. Eye (Lond) 28:249–258CrossRefGoogle Scholar
  9. 9.
    Wang H, Cheng JW, Wei RL et al (2013) Meta-analysis of selective laser trabeculoplasty with argon laser trabeculoplasty in the treatment of open-angle glaucoma. Can J Ophthalmol 48:186–192CrossRefPubMedGoogle Scholar
  10. 10.
    Hirn C, Zehnder S, Bauer G et al (2014) Long-term efficacy of selective laser trabeculoplasty in patients on prostaglandin therapy. Klin Monbl Augenheilkd 231:351–356CrossRefPubMedGoogle Scholar
  11. 11.
    Mcllraith I, Strasfeld M, Colev G et al (2006) Selective laser trabeculoplasty as initial and adjunctive treatment for open-angle glaucoma. J Glaucoma 15:124–130CrossRefGoogle Scholar
  12. 12.
    Nagar M, Ogunyomade A, O’Brart DP et al (2005) A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. Br J Ophthalmol 89:1413–1417CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stein JD, Challa P (2007) Mechanisms of action and efficacy of argon laser trabeculoplasty and selective laser trabeculoplasty. Curr Opin Ophthalmol 18:140–145CrossRefPubMedGoogle Scholar
  14. 14.
    Kagan DB, Gorfinkel NS, Hutnik CM (2014) Mechanisms of selective laser trabeculoplasty: a review. Clin Exp Ophthalmol 42:675–681CrossRefPubMedGoogle Scholar
  15. 15.
    Cvenkel B, Hvala A, Drnovsek-Olup B et al (2003) Acute ultrastructural changes of the trabecular meshwork after selective laser trabeculoplasty and low power argon laser trabeculoplasty. Lasers Surg Med 33:204–208CrossRefPubMedGoogle Scholar
  16. 16.
    Parshley DE, Bradley JM, Samples JR et al (1995) Early changes in matrix metalloproteinases and inhibitors after in vitro laser treatment to the trabecular meshwork. Curr Eye Res 14:537–544CrossRefPubMedGoogle Scholar
  17. 17.
    Arshley DE, Bradley JM, Fisk A et al (1996) Laser trabeculoplasty induces stomyelsin expression by trabecular juxtacanalicular cells. Invest Ophthalmol Vis Sci 37:795–804Google Scholar
  18. 18.
    Shaffer RN (1962) Gonioscopy anatomy of the angle of the anterior chamber of the eye. In: Shaffer RN (ed) Stereoscopic manual of gonioscopy. Mosby, St. LouisGoogle Scholar
  19. 19.
    Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140:509–516CrossRefPubMedGoogle Scholar
  20. 20.
    Kaul S, Diamond GA, Weintraub WS (2005) Trials and tribulations of non-inferiority: the ximelagatran experience. J Am Coll Cardiol 46:1986–1995CrossRefPubMedGoogle Scholar
  21. 21.
    Wang W, He M, Zhou M et al (2013) Selective laser trabeculoplasty versus argon laser trabeculoplasty in patients with open-angle glaucoma: a systematic review and meta-analysis. PLoS ONE 19(8):e84270CrossRefGoogle Scholar
  22. 22.
    Bhandari R, Taira T (2011) >6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser. Opt Express 19:19135–19141CrossRefPubMedGoogle Scholar
  23. 23.
    SooHoo JR, Seibold LK, Ammar DA et al (2015) Ultrastructural changes in human trabecular meshwork tissue after laser trabeculoplasty. J Ophthalmol 2015:476138. doi: 10.1155/2015/476138 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Almeida ED, Pinto LM, Fernandes RAB et al (2011) Pattern of intraocular pressure reduction following laser trabeculoplasty in open-angle glaucoma patients: comparison between selective and nonselective treatment. Clin Ophthalmol 5:933–936PubMedGoogle Scholar
  25. 25.
    Juzych MS, Chopra V, Banitt MR et al (2004) Comparison of long-term outcomes of selective laser trabeculoplasty versus argon laser trabeculoplasty in open angle glaucoma. Ophthalmology 111:1853–1859CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Eye Hospital, University Clinical CenterLjubljanaSlovenia

Personalised recommendations