International Ophthalmology

, Volume 35, Issue 1, pp 43–47 | Cite as

The impact of multifocal intraocular lens in retinal imaging with optical coherence tomography

  • Arnaldo Dias-Santos
  • Lívio Costa
  • Vanessa Lemos
  • Rita Anjos
  • André Vicente
  • Joana Ferreira
  • João Paulo Cunha
Original Paper


Multifocal intraocular lenses (MF IOLs) have concentric optical zones with different dioptric power, enabling patients to have good visual acuity at multiple focal points. However, several optical limitations have been attributed to this particular design. The purpose of this study is to access the effect of MF IOLs design on the accuracy of retinal optical coherence tomography (OCT). Cross-sectional study conducted at the Refractive Surgery Department of Central Lisbon Hospital Center. Twenty-three eyes of 15 patients with a diffractive MF IOL and 27 eyes of 15 patients with an aspheric monofocal IOL were included in this study. All patients underwent OCT macular scans using Heidelberg Spectralis®. Macular thickness and volume values and image quality (Q factor) were compared between the two groups. There were no statistically significant differences between both groups regarding macular thickness or volume measurements. Retinal OCT image quality was significantly lower in the MF IOL group (p < 0.01). MF IOLs are associated with a significant decrease in OCT image quality. However, this fact does not seem to compromise the accuracy of spectral domain OCT retinal measurements.


Image quality Macular thickness Multifocal intraocular lens Optical coherence tomography 


Conflicts of interest

No conflicting relationship exists for any author.


  1. 1.
    Packer M, Fine IH, Hoffman RS (2008) Aspheric intraocular lens selection: the evolution of refractive cataract surgery. Curr Opin Ophthalmol 19(1):1–4PubMedCrossRefGoogle Scholar
  2. 2.
    Alfonso JF, Fernández-Vega L, Baamonde MB, Montés-Micó R (2007) Prospective visual evaluation of apodized diffractive intraocular lenses. J Cataract Refract Surg 33(7):1235–1243PubMedCrossRefGoogle Scholar
  3. 3.
    Gierek-Ciaciura S, Cwalina L, Bednarski L, Mrukwa-Kominek E (2010) A comparative clinical study of the visual results between three types of multifocal lenses. Graefes Arch Clin Exp Ophthalmol 248:133–140PubMedCrossRefGoogle Scholar
  4. 4.
    Steinert RF (2000) Visual outcomes with multifocal intraocular lenses. Curr Opin Ophthalmol 11(1):12–21PubMedCrossRefGoogle Scholar
  5. 5.
    Fine IH, Hoffman RS, Packer M (2007) Refractive lens exchange: the quadruple win and current perspectives. J Refract Surg 23:819–824PubMedGoogle Scholar
  6. 6.
    Fernández-Vega L, Alfonso JF, Rodríguez PP, Montés-Micó R (2007) Clear lens extraction with multifocal apodized diffractive intraocular lens implantation. Ophthalmology 114:1491–1498PubMedCrossRefGoogle Scholar
  7. 7.
    Charman WN, Montés-Micó R, Radhakrishnan H (2008) Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses. J Refract Surg 24:280–286PubMedGoogle Scholar
  8. 8.
    de Vries NE, Webers CA, Touwslager WR, Bauer NJ, de Brabander J, Berendschot TT, Nuijts RM (2011) Dissatisfaction after implantation of multifocal intraocular lenses. J Cataract Refract Surg 37(5):859–865PubMedCrossRefGoogle Scholar
  9. 9.
    Blaylock JF, Si Z, Vickers C (2006) Visual and refractive status at different focal distances after implantation of the ReSTOR multifocal intraocular lens. J Refract Surg 32(9):1464–1473CrossRefGoogle Scholar
  10. 10.
    Aychoua N, Junoy Montolio FG, Jansonius NM (2013) Influence of multifocal intraocular lenses on standard automated perimetry test results. JAMA Ophthalmol 131(4):481–485PubMedCrossRefGoogle Scholar
  11. 11.
    Inoue M, Bissen-Miyajima H, Yoshino M, Suzuki T (2009) Wavy horizontal artifacts on optical coherence tomography line-scanning images caused by diffractive multifocal intraocular lenses. J Cataract Refract Surg 35(7):1239–1243PubMedCrossRefGoogle Scholar
  12. 12.
    Skiadaresi E, McAlinden C, Ravalico G, Moore J (2012) Optical coherence tomography measurements with the LENTIS Mplus multifocal intraocular lens. Graefes Arch Clin Exp Ophthalmol 250(9):1395–1398PubMedCrossRefGoogle Scholar
  13. 13.
    Posner M, Naroo SA, Nithyanandarajah G, Trivedy M, Sharma A (2010) Multifocal contact lenses and posterior pole imaging. Cont Lens Anterior Eye 33(3):151PubMedCrossRefGoogle Scholar
  14. 14.
    Hammer DX, Ferguson RD, Ustun TE, Bigelow CE, Iftimia NV, Webb RH (2006) Line-scanning laser ophthalmoscope. J Biomed Opt 11(4):041126PubMedCrossRefGoogle Scholar
  15. 15.
    Na JH, Sung KR, Lee Y (2012) Factors associated with the signal strengths obtained by spectral domain optical coherence tomography. Korean J Ophthalmol 26(3):169–173PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Arnaldo Dias-Santos
    • 1
    • 3
  • Lívio Costa
    • 1
  • Vanessa Lemos
    • 1
  • Rita Anjos
    • 1
  • André Vicente
    • 1
  • Joana Ferreira
    • 1
  • João Paulo Cunha
    • 1
    • 2
    • 4
  1. 1.Department of OphthalmologyCentral Lisbon Hospital CenterLisbonPortugal
  2. 2.Faculty of Medical SciencesNew University of LisbonLisbonPortugal
  3. 3.Hospital de Santo António dos Capuchos, Serviço de OftalmologiaLisboaPortugal
  4. 4.Investigation Ophthalmology Lisbon CenterLisbonPortugal

Personalised recommendations