Skip to main content

Advertisement

Log in

Evaluations of therapeutic efficacy of intravitreal injected polylactic-glycolic acid microspheres loaded with triamcinolone acetonide on a rabbit model of uveitis

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Conventional treatments of uveitis are not ideal because of the short period of therapeutic efficacy. In the present study, biodegradable polylactic-glycolic acid microspheres loaded with triamcinolone acetonide (TA) were prepared to achieve sustained drug release and their therapeutic efficacy was investigated on a rabbit model of uveitis. TA-loaded microspheres (TA-MS) were prepared by the solvent evaporation method and characterized for encapsulation efficiency, particle size, morphology and in vitro release. The therapeutic efficacy was studied on the rabbit experimental uveitis model based on scoring of the inflammation, aqueous leukocyte counting, aqueous protein determination and histological examination. The TA-MS exhibited smooth and intact surfaces with an average diameter of 50.87 μm. The drug-loading coefficient and encapsulation efficiency were 15.2 ± 0.6 % and 91.24 ± 3.77 %, respectively. The drug release from TA-MS lasted up to 87 days, but only 46 days for TA suspension. The change in surface morphology also showed sustained drug release from TA-MS. TA-MS exhibited improved therapeutic efficacy in lipopolysaccharide -induced uveitis compared to TA suspension, especially in regard to the inhibition of inflammation. The TA-MS had a longer-term therapeutic effect on intraocular inflammation in LPS-induced uveitis in rabbits compared to TA suspension. The results suggested that TA-MS can be developed as a potential sustained-release system for the treatment of uveitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TA:

Triamcinolone acetonide

MS:

Microspheres

TA-MS:

TA-loaded microshperes

PLGA:

Polylactic-glycolic acid

LPS:

Lipopolysaccharide

AS:

Aseptic saline

EIU:

Endotoxin-induced uveitis

SEM:

Scanning electron microscopy

PVA:

Polyvinyl alcohol

MS-blank:

TA-unloaded microspheres

HPLC:

High-performance liquid chromatography

EE:

Encapsulation efficiency

PBS:

Phosphate-buffered saline

References

  1. Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140(3):509–516

    Article  PubMed  Google Scholar 

  2. Suttorp-Schulten MS, Rothova A (1996) The possible impact of uveitis in blindness: a literature survey. Br J Ophthalmol 80(9):844–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Smith JR (2004) Management of uveitis. Clin Exp Med 4(1):21–29

    Article  CAS  PubMed  Google Scholar 

  4. Chin HS, Park TS, Moon YS et al (2005) Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and non-vitrectomized eyes. Retina 25(5):556–560

    Article  PubMed  Google Scholar 

  5. Martidis A, Duker JS, Greenberg PB et al (2002) Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 109(5):920–927

    Article  PubMed  Google Scholar 

  6. Cunningham MA, Edelman JL, Kaushal S (2008) Intravitreal steroids for macular edema: the past, the present, and the future. Surv Ophthalmol 53(2):139–149

    Article  PubMed  Google Scholar 

  7. Spaide RF, Sorenson J, Maranan L (2003) Combined photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide for choroidal neovascularization. Ophthalmology 110(8):1517–1525

    Article  PubMed  Google Scholar 

  8. Kok H, Lau C, Maycock N et al (2005) Outcome of intravitreal triamcinolone in uveitis. Ophthalmology 112(11):1916 e1911–1917

    Article  PubMed  Google Scholar 

  9. Gilger BC, Malok E, Stewart T et al (2000) Long-term effect on the equine eye of an intravitreal device used for sustained release of cyclosporine A. Vet Ophthalmol 3(2–3):105–110

    Article  CAS  PubMed  Google Scholar 

  10. Jermak CM, Dellacroce JT, Heffez J et al (2007) Triamcinolone acetonide in ocular therapeutics. Surv Ophthalmol 52(5):503–522

    Article  CAS  PubMed  Google Scholar 

  11. Salvolini E, Neri P, Orciani M, Di Primio R, Giovannini A (2008) Intravitreal micronized triamcinolone versus triamcinolone acetonide: a clinical and morphological comparative study. Int J Immunopathol Pharmacol 21(1):181–188

    CAS  PubMed  Google Scholar 

  12. Haghjou N, Soheilian M, Abdekhodaie MJ (2011) Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vis Res 6(4):317–329

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Delie F, Blanco-Prieto MJ (2005) Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 10(1):65–80

    Article  CAS  PubMed  Google Scholar 

  14. Barratt GM (2000) Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today 3(5):163–171

    Article  CAS  PubMed  Google Scholar 

  15. Washington C (1996) Drug release from microparticulate systems. In: Benita S (ed) Microencapsulation: methods and industrial applications. Marcel Dekker, New York, pp 155–181

    Google Scholar 

  16. Sy JC, Davis ME (2010) Delivering regenerative cues to the heart: cardiac drug delivery by microspheres and peptide nanofibers. J Cardiovasc Transl Res 3(5):461–468

    Article  PubMed Central  PubMed  Google Scholar 

  17. Bhardwaj U, Papadimitrakopoulos F, Burgess DJ (2008) A review of the development of a vehicle for localized and controlled drug delivery for implantable biosensors. J Diabetes Sci Technol 2(6):1016–1029

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mansoor S, Kuppermann BD, Kenney MC (2009) Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res 26(4):770–784

    Article  CAS  PubMed  Google Scholar 

  19. Herrero-Vanrell R, Refojo MF (2001) Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 52(1):5–16

    Article  CAS  PubMed  Google Scholar 

  20. Vallelado AI, Lopez MI, Calonge M et al (2002) Efficacy and safety of microspheres of cyclosporin A, a new systemic formulation, to prevent corneal graft rejection in rats. Curr Eye Res 24(1):39–45

    Article  PubMed  Google Scholar 

  21. Khaled KA, Sarhan HA, Ibrahim MA et al (2010) Prednisolone-loaded PLGA microspheres. in vitro characterization and in vivo application in adjuvant-induced arthritis in mice. AAPS Pharm Sci Tech 11(2):859–869

    Article  CAS  Google Scholar 

  22. Koga T, Koshiyama Y, Gotoh T et al (2002) Coinduction of nitric oxide synthase and arginine metabolic enzymes in endotoxin-induced uveitis rats. Exp Eye Res 75(6):659–667

    Article  CAS  PubMed  Google Scholar 

  23. Hanashiro RK, Fujino Y, Gugunfu et al (1997) Synthetic lipid A-induced uveitis and endotoxin-induced uveitis—a comparative study. Jpn J Ophthalmol 41(6):355–361

    Article  CAS  PubMed  Google Scholar 

  24. Rosenbaum JT, McDevitt HO, Guss RB et al (1980) Endotoxin-induced uveitis in rats as a model for human disease. Nature 286(5773):611–613

    Article  CAS  PubMed  Google Scholar 

  25. Hoekzema R, Murray PI, van Haren MA et al (1991) Analysis of interleukin-6 in endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 32(1):88–95

    CAS  PubMed  Google Scholar 

  26. Cheng CK, Berger AS, Pearson PA et al (1995) Intravitreal sustained-release dexamethasone device in the treatment of experimental uveitis. Invest Ophthalmol Vis Sci 36(2):442–453

    CAS  PubMed  Google Scholar 

  27. Barcia E, Herrero-Vanrell R, Diez A et al (2009) Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res 89(2):238–245

    Article  CAS  PubMed  Google Scholar 

  28. Cardillo JA, Souza-Filho AA, & Oliveira AG (2006) Intravitreal Bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol 81(12):675–677, 679–681

    Google Scholar 

  29. Siepmann J, Faisant N, Akiki J et al (2004) Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release 96(1):123–134

    Article  CAS  PubMed  Google Scholar 

  30. Zarei-Ghanavati S, Malaekeh-Nikouei B, Pourmazar R et al (2012) Preparation, characterization, and in vivo evaluation of triamcinolone acetonide microspheres after intravitreal administration. J Ocul Pharmacol Ther 28(5):502–506

    Article  CAS  PubMed  Google Scholar 

  31. Yasukawa T, Ogura Y, Tabata Y et al (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23(3):253–281

    Article  CAS  PubMed  Google Scholar 

  32. Herrero-Vanrell R, Ramirez L, Fernandez-Carballido A et al (2000) Biodegradable PLGA microspheres loaded with ganciclovir for intraocular administration. Encapsulation technique, in vitro release profiles, and sterilization process. Pharm Res 17(10):1323–1328

    Article  CAS  PubMed  Google Scholar 

  33. Leeds JM, Henry SP, Truong L et al (1997) Pharmacokinetics of a potential human cytomegalovirus therapeutic, a phosphorothioate oligonucleotide, after intravitreal injection in the rabbit. Drug Metab Dispos 25(8):921–926

    CAS  PubMed  Google Scholar 

  34. Howes EL Jr, Morrison DC (1980) Lipid A dependence of the ocular response to circulating endotoxin in rabbits. Infect Immun 30(3):786–790

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Beer PM, Wong SJ, Schartman JP et al (2010) Infliximab stability after reconstitution, dilution, and storage under refrigeration. Retina 30(1):81–84

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Drug R&D (No. 2009ZX09310-001) and Innovation Team of Ministry of Education (No. BMU20110263). The authors thank Dr. Jiying Wang for his critical final manuscript revision.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., He, B., Dai, W. et al. Evaluations of therapeutic efficacy of intravitreal injected polylactic-glycolic acid microspheres loaded with triamcinolone acetonide on a rabbit model of uveitis. Int Ophthalmol 34, 465–476 (2014). https://doi.org/10.1007/s10792-013-9829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-013-9829-0

Keywords

Navigation