Advertisement

Inorganic Materials

, Volume 41, Issue 11, pp 1139–1143 | Cite as

Heat Capacity and Thermodynamic Functions of Ga2Se3 from 14 to 320 K

  • A. V. Tyurin
  • K. S. Gavrichev
  • L. N. Golushina
  • V. E. Gorbunov
  • V. P. Zlomanov
Article

Abstract

The heat capacity of Ga2Se3 is measured from 14 to 320 K by adiabatic calorimetry. The smoothed heat capacity data are used to evaluate temperature-dependent thermodynamic functions (entropy, enthalpy increment, and reduced Gibbs energy) of gallium selenide. Under standard conditions, the thermodynamic properties of Ga2Se3 are C p 0 (298.15 K) = 120.8 ± 0.2 J/(K mol), S0(298.15 K) = 180.4 ± 0.4 J/(K mol), H0(298.15 K) - H0(0) = 25.32 ± 0.05 kJ/mol, and Φ0(298.15 K) = 95.52 ± 0.19 J/(K mol). The Debye characteristic temperature of Ga2Se3 evaluated from heat capacity data is 340 ± 10 K.

Keywords

Entropy Enthalpy Heat Capacity Calorimetry Gibbs Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Ioffe, A.F., Poluprovodnikovye termoelementy (Semiconductor Thermoelements), Moscow: Akad. Nauk SSSR, 1961.Google Scholar
  2. 2.
    Gavrichev, K.S., Golushina, L.N., Gorbunov, V.E., et al., Heat Capacity and Thermodynamic Properties of InTe from 15 to 600 K, Russ. J. Phys. Chem., 2001, vol. 75,suppl. 1, pp. 100–105.Google Scholar
  3. 3.
    Tyurin, A.V., Gavrichev, K.S., Gorbunov, V.E., et al., Low-Temperature Heat Capacity and Thermodynamic Properties of GaSe, Zh. Fiz. Khim., 2004, vol. 78, no.10, pp. 1771–1774.Google Scholar
  4. 4.
    Fiziko-khimicheskie svoistva poluprovodnikovykh veshchestv: Spravochnik (Physicochemical Properties of Semiconductors: A Handbook), Novoselova, A.V. and Lazarev, V.B., Eds., Moscow: Nauka, 1979.Google Scholar
  5. 5.
    Parthe, E., Cristallochimie des structures tetraedriques, Paris: Gordon & Breach, 1972, p. 295.Google Scholar
  6. 6.
    http://www.physics.nist.gov/PhysRefData/Compositions.Google Scholar
  7. 7.
    Gorbunov, V.E., Gurevich, V.M., and Gavrichev, K.S., Adiabatic Microcalorimeter with an Aneroid-Type Cryostat, Zh. Fiz. Khim., 1982, vol. 56, no.1, pp. 235–237.Google Scholar
  8. 8.
    Iorish, V.S. and Tolmach, P.I., Procedure and Program for Spline Fitting Low-Temperature Heat Capacity Data, Zh. Fiz. Khim., 1986, vol. 60, no.10, pp. 2583–2587.Google Scholar
  9. 9.
    Shebershneva, O.V., Fractal Model for Low-Temperature Heat Capacity of Inorganic Solids, Cand. Sci. (Chem.) Dissertation, Moscow: Kurnakov Inst. of General and Inorganic Chemistry, Russ. Acad. Sci., 1996.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • A. V. Tyurin
    • 1
  • K. S. Gavrichev
    • 1
  • L. N. Golushina
    • 1
  • V. E. Gorbunov
    • 1
  • V. P. Zlomanov
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations