Inorganic Materials

, Volume 41, Issue 9, pp 950–954 | Cite as

High-Pressure Structural Transformations of Carbyne

  • T. D. Varfolomeeva
  • S. V. Popova
  • A. G. Lyapin
  • V. V. Brazhkin
  • R. A. Sadykov


The structure of cumulenic carbyne samples is studied by x-ray diffraction after exposure to high temperatures and pressures (200–900°C, 7.7 GPa). The results indicate that, with increasing temperature, carbyne transforms from a highly disordered to x-ray amorphous state, with narrower diffuse bands. At high temperatures, a disordered graphite-like structure is formed, with a density substantially lower than that of graphite. The behavior of impurities during the structural transformation of carbyne is discussed.


Graphite Inorganic Chemistry Structural Transformation Amorphous State Diffuse Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kroto, H.W., Heath, J.R., O'Brien, S.C., et al., C60: Buckminsterfullerene, Nature (London), 1985, vol. 318, pp. 162–163.CrossRefGoogle Scholar
  2. 2.
    Iijima, S., Helical Microtubules of Graphitic Carbon, Nature (London), 1991, vol. 354, pp. 56–58.CrossRefGoogle Scholar
  3. 3.
    Heimann, R.B., Kleiman, J., and Salansky, N.M., A Unified Structural Approach to Linear Carbon Polytypes, Nature (London), 1983, vol. 306, pp. 164–167.CrossRefGoogle Scholar
  4. 4.
    Heimann, R.B., Kleiman, J., and Salansky, N.M., Structural Aspects and Conformation of Linear Carbon Polytypes (Carbynes), Carbon, 1984, vol. 22, no.2, pp. 147–155.CrossRefGoogle Scholar
  5. 5.
    Kudryavtsev, Yu.P., Evsyukov, S.E., Guseva, M.B., et al., Carbyne: A Third Carbon Allotrope, Izv. Akad. Nauk, Ser. Khim., 1993, vol. 42, no.3, pp. 450–462.Google Scholar
  6. 6.
    Kudryavtsev, Yu.P., Heimann, R.B., and Evsyukov, S.E., Carbynes: Advances in the Field of Linear Chain Compounds, J. Mater. Sci., 1997, vol. 31, no.4, pp. 557–590.Google Scholar
  7. 7.
    Evsyukov, S.E. and Kavan, L., Carbyne and Carbynoid Structures, Heimann, R.B., Ed., Dordrecht: Kluwer, 1999.Google Scholar
  8. 8.
    McKenzie, D.R., Muller, D., and Pailthorpe, B.A., Compressive-Stress-Induced Formation in Thin-Film Tetrahedral Amorphous Carbon, Phys. Rev. Lett., 1991, vol. 67, pp. 773–776.CrossRefPubMedGoogle Scholar
  9. 9.
    Weiler, M., Sattel, S., Giessen, T., et al., Preparation and Properties of Highly Tetrahedral Hydrogenated Amorphous Carbon, Phys. Rev. B: Condens. Matter, 1996, vol. 53, pp. 1594–1608.Google Scholar
  10. 10.
    Jungnickel, G., Sitch, P.K., Frauenheim, Th., et al., Nitrogen Doping in Purely sp 2 Bonded Forms of Carbon, Phys. Rev. B: Condens. Matter, 1998, vol. 57, no.2, pp. 661–665.Google Scholar
  11. 11.
    Cote, M., Grossman, J.C., Cohen, M.L., and Louie, S.G., Theoretical Study of Three-Dimensional All-sp 2 Structure, Phys. Rev. B: Condens. Matter, 1998, vol. 58, no.2, pp. 664–668.Google Scholar
  12. 12.
    Townsend, S.J., Lenosky, T.J., Muller, D.A., et al., Negative Curve Graphite Sheet Model of Amorphous Carbon, Phys. Rev. Lett., 1992, vol. 69, no.6, pp. 921–924.CrossRefPubMedGoogle Scholar
  13. 13.
    Rosato, V., Celino, M., Benedek, G., and Gaito, S., Thermodynamic Behavior of the Carbon Schwarzite fcc (C36)2, Phys. Rev. B: Condens. Matter, 1999, vol. 60, pp. 16928–16933.Google Scholar
  14. 14.
    Diederich, F., Carbon Scaffolding: Building Acetylenic All-Carbon and Carbon-Rich Compounds, Nature (London), 1994, vol. 369, pp. 199–207.CrossRefGoogle Scholar
  15. 15.
    Baughman, R.H., Galvao, D.S., Cui, C., and Dantas, S.O., Hinged and Chiral Polydiacetylene Carbon Crystals, Chem. Phys. Lett., 1997, vol. 269, pp. 356–364.CrossRefGoogle Scholar
  16. 16.
    Ravagnan, L., Siviero, F., Lenardi, C., et al., Cluster-Beam Deposition and In Situ Characterization of Carbyne-Rich Carbon Forms, Phys. Rev. Lett., 2002, vol. 89, no.28, p. 285506 (1–4).CrossRefPubMedGoogle Scholar
  17. 17.
    Lyapin, A.G., Brazhkin, V.V., Lyapin, S.G., et al., Non-traditional Carbon Semiconductors Prepared from Fullerite C60 and Carbyne under High Pressure, Phys. Status Solidi B, 1999, vol. 211, pp. 401–412.CrossRefGoogle Scholar
  18. 18.
    Brazhkin, V.V., Lyapin, A.G., Popova, S.V., et al., Structure-Property Relationships in New Metastable Carbon Phases Prepared at High Pressures from C60 Fullerite and Carbyne, Pis'ma Zh. Eksp. Teor. Fiz., 2002, vol. 76, pp. 805–817.Google Scholar
  19. 19.
    Lyapin, A.G., Perspectives of Fullerene Nanotechnology, Osawa, E., Ed., Dordrecht: Kluwer, 2002, p. 199.Google Scholar
  20. 20.
    Varfolomeeva, T.D., Popova, S.V., Lyapin, A.G., et al., High-Pressure Structural Transformations of a Cumulenic Form of Amorphous Carbyne, Pis'ma Zh. Eksp. Teor. Fiz., 1997, vol. 66, no.4, pp. 255–260.Google Scholar
  21. 21.
    Demishev, S.V., Pronin, A.A., Sluchanko, N.E., et al., 1D-3D Crossover in Hopping Conduction in Carbynes, Pis'ma Zh. Eksp. Teor. Fiz., 2000, vol. 72, no.5, pp. 547–552.Google Scholar
  22. 22.
    Demishev, S.V., Pronin, A.A., Sluchanko, N.E., et al., New Nanocluster Carbyne-Based Material Synthesized under High Pressure, Fiz. Tverd. Tela (S.-Peterburg), 2002, vol. 44, no.4, pp. 585–588.Google Scholar
  23. 23.
    Demishev, S.V., Pronin, A.A., Glushkov, V.V., et al., Hopping Conduction in Carbynes Modified at High Pressures and Temperatures: Galvanomagnetic and Thermoelectric Properties, Zh. Eksp. Teor. Fiz., 2002, vol. 122, pp. 140–149.Google Scholar
  24. 24.
    Demishev, S.V., Pronin, A.A., Glushkov, V.V., et al., Electronic Transport in Carbynes Modified at High Pressures, Pis'ma Zh. Eksp. Teor. Fiz., 2003, vol. 78, pp. 984–993.Google Scholar
  25. 25.
    Brazhkin, V.V., Lyapin, A.G., Lyapin, S.G., et al., Proc. Int. Conf. on High Pressure Science and Technology, AIRAPT-17 (Honolulu, 1999), Hyderabad: Universities, 2000, vol. 2, p. 684.Google Scholar
  26. 26.
    Kozlov, M.E., Hirabayashi, M., Nozaki, K., et al., Transformation of C60 Fullerene into a Superhard Form of Carbon at Moderate Pressure, Appl. Phys. Lett., 1995, vol. 66, pp. 1199–1201.CrossRefGoogle Scholar
  27. 27.
    Lyapin, A.G., Brazhkin, V.V., Gromnitskaya, E.L., et al., Hardening of Fullerite C60 during Temperature-Induced Polymerization and Amorphization under Pressure, Appl. Phys. Lett., 2000, vol. 76, pp. 712–714.CrossRefGoogle Scholar
  28. 28.
    Powder Diffraction File-2, Newtown Square: Int. Centre for Diffraction Data, card nos. 12-0212, 13-0148, 23-0064, 25-0284, 26-1076, 26-1077, 26-1080.Google Scholar
  29. 29.
    Kudryavtsev, Yu.P., Evsyukov, S.E., Babaev, G., et al., Oriented Carbyne Layers, Carbon, 1992, vol. 30, pp. 213–216.CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • T. D. Varfolomeeva
    • 1
  • S. V. Popova
    • 1
  • A. G. Lyapin
    • 1
  • V. V. Brazhkin
    • 1
  • R. A. Sadykov
    • 1
  1. 1.Vereshchagin Institute of High-Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow oblastRussia

Personalised recommendations