Inorganic Materials

, Volume 41, Issue 8, pp 812–818 | Cite as

Hydrogenated Nanoporous Diamond Films

  • A. V. Khomich
  • V. P. Varnin
  • I. G. Teremetskaya
  • N. A. Poklonskii
  • N. M. Lapchuk
  • A. O. Korobko


Nanoporous diamond films up to 20 µm thick with a pore size of 1–1.5 nm and porosities from 0.4 to 0.6 are produced by selective etching in air. The effect of hydrogen plasma processing on the IR absorption and electron paramagnetic resonance spectra of the films is investigated. The results indicate that the concentration of bonded hydrogen in the hydrogenated nanoporous diamond films attains 20 at %. The kinetics of hydrogen desorption are studied as a function of temperature.


Hydrogen Porosity Inorganic Chemistry Pore Size Electron Paramagnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fedoseev, D.V., Uspenskaya, K.S., Varnin, V.P., and Vnukov, S.P., Effect of Hydrogen on Diamond Chemical Vapor Deposition, Izv. Akad. Nauk SSSR, Ser. Khim., 1978, pp. 1252–1257.Google Scholar
  2. 2.
    Celii, F.G. and Butler, J.E., Diamond Chemical Vapor Deposition, Annu. Rev. Phys. Chem., 1991, vol. 42, pp. 643–684.CrossRefGoogle Scholar
  3. 3.
    Dischler, B., Wild, C., Muller-Sebert, W., and Koidl, P., Hydrogen in Polycrystalline Diamond: An Infrared Analysis, Physica B (Amsterdam), 1993, vol. 185, nos.1–4, pp. 217–221.Google Scholar
  4. 4.
    Reichart, P., Datzmann, G., Hauptner, A., et al., Three-Dimensional Hydrogen Microscopy in Diamond, Science, 2004, vol. 306, pp. 1537–1540.CrossRefPubMedGoogle Scholar
  5. 5.
    Wort, C.J.H., Sweeney, C.G., Cooper, M.A., et al., Thermal Properties of Bulk Polycrystalline CVD Diamond, Diamond Relat. Mater., 1994, vol. 3, no.9, pp. 1158–1167.CrossRefGoogle Scholar
  6. 6.
    Ralchenko, V, Nano-and Microstructural Features in CVD Diamond Growth, Nanostructured Carbon for Advanced Applications, Benedek, G. et al., Eds., Dordrecht: Kluwer, 2001, pp. 27–52.Google Scholar
  7. 7.
    Erz, R., Dotter, W., Jung, K., and Ehrhardt, H., Preparation of Smooth and Nanocrystalline Diamond Films, Diamond Relat. Mater., 1993, vol. 2, no.4, pp. 449–453.CrossRefGoogle Scholar
  8. 8.
    Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., Growth of Diamond Particles from Methane-Hydrogen Gas, J. Mater. Sci., 1982, vol. 17, pp. 3106–3111.CrossRefGoogle Scholar
  9. 9.
    Khomich, A.V., Perov, P.I., Varnin, V.P., et al., Surface Chemical Effects on the Electrical and Optical Properties of Thin Nanocrystalline Diamond Films, Mater. Res. Soc. Symp. Proc., 1996, vol. 423, pp. 723–728.Google Scholar
  10. 10.
    Khomich, A., Ralchenko, V., Nistor, L., et al., Optical Properties and Defect Structure of CVD Diamond Films Annealed at 900–1600°C, Phys. Status Solidi A, 2000, vol. 181, no.1, pp. 37–44.CrossRefGoogle Scholar
  11. 11.
    Khomich, A.V., Ralchenko, V.G., Vlasov, A.V., et al., Effect of High Temperature Annealing on Optical and Thermal Properties of CVD Diamond, Diamond Relat. Mater., 2001, vol. 10, nos.3–7, pp. 546–551.CrossRefGoogle Scholar
  12. 12.
    Talbot-Ponsonby, D.F., Newton, M.E., Baker, J.M., et al., EPR and Optical Studies on Polycrystalline Diamond Films Grown by Chemical Vapor Deposition and Annealed between 1100 and 1900 K, Phys. Rev. B: Condens. Matter, 1998, vol. 57, no.4, pp. 2302–2309.Google Scholar
  13. 13.
    Tang, C.J., Neves, A.J., and Fernandes, A.J.S., Influence of Nucleation on Hydrogen Incorporation in CVD Diamond Films, Diamond Relat. Mater., 2002, vol. 11, nos.3–6, pp. 527–531.CrossRefGoogle Scholar
  14. 14.
    McNamara, K.M., Williams, B.E., Gleason, K.K., and Scruggs, B.E., Identification of Defects and Impurities in Chemical-Vapor-Deposited Diamond through Infrared Spectroscopy, J. Appl. Phys., 1994, vol. 76, no.4, pp. 2466–2472.CrossRefGoogle Scholar
  15. 15.
    Jiang, T. and Xu, K., FTIR Study of Ultradispersed Diamond Powder Synthesized by Explosive Detonation, Carbon, 1995, vol. 33, no.12, pp. 1663–1671.CrossRefGoogle Scholar
  16. 16.
    Ando, T., Yamamoto, K., Ishii, M., et al., Oxidation of Diamond Surfaces Studied by FTIR, TPD, and TPR Spectroscopy, Advances in Diamond Science and Technology, Saito, S. et al., Eds., Tokyo: MYU, 1994, pp. 431–434.Google Scholar
  17. 17.
    Schulberg, M.T., Fox, C.A., Kubiak, G.D., and Stulen, R.H., Hydrogen Desorption from Chemical Vapor Deposited Diamond Films, J. Appl. Phys., 1995, vol. 77, no.7, pp. 3484–3490.CrossRefGoogle Scholar
  18. 18.
    Talbot-Ponsonby, D.F., Newton, M.E., Baker, J.M., et al., An Electron Paramagnetic Resonance Investigation of Paramagnetic Defects in Diamond Films Grown by Chemical Vapour Deposition, J. Phys.: Condens. Matter, 1996, vol. 8, no.7, pp. 837–849.CrossRefGoogle Scholar
  19. 19.
    Show, Y., Iwase, M., and Izumi, T., Structural Characterization of CVD Diamond Film Using the ESR Method, Thin Solid Films, 1996, vol. 274, no.1, pp. 50–54.CrossRefGoogle Scholar
  20. 20.
    Iakubovskii, K. and Stesmans, A., Characterization of Hydrogen and Silicon-Related Defects in CVD Diamond by Electron Spin Resonance, Phys. Rev. B: Condens. Matter, 2002, vol. 66, p. 195207.Google Scholar
  21. 21.
    Poklonskii, N.A., Lapchuk, N.M., and Lapchuk, T.M., Inverted Room-Temperature ESR Signal from Nitrogen-Containing Defects in Synthetic Diamond Single Crystals, Pis’ma Zh. Eksp. Teor. Fiz., 2004, vol. 80, no.12, pp. 880–883.Google Scholar
  22. 22.
    Wertz, J.E. and Bolton, J.R., Electron Spin Resonance: Elementary Theory and Practical Applications, New York: McGraw-Hill, 1972. Translated under the title Teoriya i prakticheskie prilozheniya metoda EPR, Moscow: Mir, 1975.Google Scholar
  23. 23.
    Nebel, C.E., Sauerer, C., Ertl, F., et al., Hydrogen-Induced Transport Properties of Holes in Diamond Surface Layers, Appl. Phys. Lett., 2001, vol. 79, no.27, pp. 4541–4543.CrossRefGoogle Scholar
  24. 24.
    Ballutaud, D., Jomard, F., Theys, B., et al., Hydrogen Diffusion and Stability in Polycrystalline CVD Undoped Diamond, Diamond Relat. Mater., 2001, vol. 10, nos.3–7, pp. 405–410.CrossRefGoogle Scholar
  25. 25.
    Chevallier, J., Theys, B., Lusson, A., et al., Hydrogen-Boron Interactions in p-Type Diamond, Phys. Rev. B: Condens. Matter, 1998, vol. 58, pp. 7966–7969.Google Scholar
  26. 26.
    Goss, J.P., Theory of Hydrogen in Diamond, J. Phys.: Condens. Matter, 2003, vol. 15, pp. R551–R580.CrossRefGoogle Scholar
  27. 27.
    Goss, J.P., Jones, R., Heggie, M.I., et al., Theory of Hydrogen in Diamond, Phys. Rev. B: Condens. Matter, 2002, vol. 65, p. 115207.Google Scholar
  28. 28.
    Briddon, P.R., Jones, R., Listen, G.M.S., et al., Hydrogen in Diamond, J. Phys. C: Solid State Phys., 1998, vol. 21, no.30, pp. L1027–L1031.CrossRefGoogle Scholar
  29. 29.
    Schneider, J.W., Kiefl, R.F., Chowet, K.H., et al., Bond-Centered Muonium in Diamond: Resolved Nuclear Hyperfine Structure, Phys. Rev. Lett., 1993, vol. 71, no.4, pp. 557–562.CrossRefPubMedGoogle Scholar
  30. 30.
    Sideras-Haddad, E., Connel, S.H., Sellchop, J.P.F., et al., Hydrogen and Oxygen Chemistry and Dynamics in Diamond Studied by Nuclear Microscopic Techniques, Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, vol. 181, nos.1–4, pp. 419–425.Google Scholar
  31. 31.
    Saguy, C., Cytermann, C., Fizgeer, B., et al., Diffusion of Hydrogen in Undoped, p-Type, and n-Type Doped Diamonds, Diamond Relat. Mater., 2003, vol. 12, nos.3–7, pp. 623–631.CrossRefGoogle Scholar
  32. 32.
    Ostrovskaya, L.Yu., Perevertailo, V.M., Ralchenko, V.G., and Dement’ev, A.P., Wetting of Diamond Films: Effects of Surface Hydrogenation and Oxidation, Sverkhtverd. Mater., 2001, no. 1, pp. 64–76.Google Scholar
  33. 33.
    Dillon, A.C. and Heben, M.J., Hydrogen Storage Using Carbon Absorbents: Past, Present, and Future, Appl. Phys. A, 2001, vol. 72, no.2, pp. 133–142.Google Scholar
  34. 34.
    Bunger, U. and Zittel, W., Hydrogen Storage in Carbon Nanostructures—Still a Long Road from Science to Commerce?, Appl. Phys. A, 2001, vol. 72, no.2, pp. 147–151.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. V. Khomich
    • 1
  • V. P. Varnin
    • 2
  • I. G. Teremetskaya
    • 2
  • N. A. Poklonskii
    • 3
  • N. M. Lapchuk
    • 3
  • A. O. Korobko
    • 3
  1. 1.Institute of Radio Engineering and Electronics (Fryazino Branch)Russian Academy of SciencesFryazino, Moscow oblastRussia
  2. 2.Institute of Physical ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Belarussian State UniversityMinskBelarus

Personalised recommendations