Skip to main content
Log in

Calculation of the Electronic and Thermal Properties of C/BN Nanotubular Heterostructures

  • Published:
Inorganic Materials Aims and scope

Abstract

Modeling results are presented on the electronic, structural, and thermal properties of a (5,5)C@(17,0)BN-NT tubular heterostructure (a metal-like carbon nanotube inside a dielectric boron nitride nanotube) regarded as a prototype of nanocables. It is shown that the electronic properties of the nanocable remain unchanged up to about 3500 K. The properties of the nanocable are analyzed in comparison with those of a [C60]@(17,0)BN-NT peapod, a potential precursor to C/BN nanocables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tanaka, K., Yamabe, T., and Fuku, K., The Science and Technology of Carbon Nanotubes, Oxford: Elsevier, 1999.

    Google Scholar 

  2. Harris, P.J.F., Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: Cambridge Univ. Press, 1999.

    Google Scholar 

  3. Ivanovskii, A.L., Kvantovaya khimiya v materialovedenii. Nanotubulyarnye formy veshchestva (Quantum Chemistry in Materials Science: Nanotubular Materials), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1999.

    Google Scholar 

  4. Bernholc, J., Brenner, D., Nardelli, M.B., et al., Mechanical and Electrical Properties of Nanotubes, Annu. Rev. Mater. Res., 2002, vol. 32, pp. 347–375.

    CAS  Google Scholar 

  5. Iijima, S., Carbon Nanotubes: Past, Present, and Future, Physica B (Amsterdam), 2002, vol. 323, no.1, pp. 1–5.

    CAS  Google Scholar 

  6. Tenne, R. and Zettl, A.K., Nanotubes from Inorganic Materials, Top. Appl. Phys., 2001, vol. 80, pp. 81–112.

    CAS  Google Scholar 

  7. Tenne, R., Inorganic Nanoclusters with Fullerene-like Structure and Nanotubes, Prog. Inorg. Chem., 2001, vol. 50, pp. 269–315.

    CAS  Google Scholar 

  8. Buchachenko, A.L., Nanochemistry: A Direct Route to the High Technology of the New Century, Usp. Khim., 2002, vol. 72, no.5, pp. 419–436.

    Google Scholar 

  9. Ivanovskii, A.L., Noncarbon Nanotubes: Synthesis and Modeling, Usp. Khim., 2002, vol. 71, no.3, pp. 203–224.

    Google Scholar 

  10. Tenne, R., Inorganic Nanotubes and Fullerene-like Materials, Chem. Eur. J., 2002, vol. 8, no.23, pp. 5297–5304.

    Google Scholar 

  11. Stankevich, I.V. and Chernozatonskii, L.A., Tamm States and Quantum Dots in Carbon and Heteroatomic Nanotubes, Phys. Solid State, 1999, vol. 41, no.8, pp. 1386–1390.

    CAS  Google Scholar 

  12. Galpern, E.G., Pinyaskin, V.V., Stankevich, I.V., and Chernozatonskii, L.A., Heteroatomic Nanotubes with Quasi-One-Dimensional Superlattice Structure, J. Phys. Chem., vol. 101, no.5, pp. 705–709.

  13. Chernozatonskii, L.A., Gal’perin, E.G., Stankevich, I.V., and Shimkus, Y.K., Nanotube C-BN Heterostructures: Electronic Properties, Carbon, 1999, vol. 37, no.1, pp. 117–121.

    CAS  Google Scholar 

  14. Meunier, V., Roland, C., Bernholc, J., and Nardelli, M.B., Electronic and Field Emission Properties of Boron Nitride/Carbon Nanotube Superlattices, Appl. Phys. Lett., 2002, vol. 81, no.1, pp. 46–48.

    CAS  Google Scholar 

  15. Choi, J., Kim, Y.H., Chang, K.J., and Tomanek, D., Itinerant Ferromagnetism in Heterostuctured C/BN Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 67, no.12, art. 12542.

  16. Terrones, M., Grobert, N., and Terrones, H., Synthetic Routes to Nanoscale BxCyNz Architectures, Carbon, 2002, vol. 40, no.10, pp. 1665–1684.

    CAS  Google Scholar 

  17. Endo, M., Hayashi, T., Muramatsu, H., Kim, Y.H., et al., Coalescence of Double-Walled Carbon Nanotubes: Formation of Novel Carbon Bicables, Nano Lett., 2004, vol. 4, no.3, pp. 1451–1460.

    CAS  Google Scholar 

  18. Rubio, A., Miyamoto, Y., Blase, X., et al., Theoretical Study of One-Dimensional Chains of Metal Atoms in Nanotubes, Phys. Rev. B: Condens. Matter, 1996, vol. 53, no.7, pp. 4023–4026.

    CAS  Google Scholar 

  19. Monthioux, M., Filling Single-Wall Carbon Nanotubes, Carbon, 2002, vol. 40, no.10, pp. 1809–1823.

    CAS  Google Scholar 

  20. Golberg, D., Dorozhkin, P.S., Bando, Y., et al., Cables of BN-Insulated B-C-N Nanotubes, Appl. Phys. Lett., 2003, vol. 82, no.8, pp. 1375–1379.

    Google Scholar 

  21. Golberg, D., Han, W., Bando, Y., Bourgeois, L., et al., Fine Structure of Boron Nitride Nanotubes Produced from Carbon Nanotubes by a Substitution Reaction, J. Appl. Phys., 1999, vol. 86, no.4, pp. 2364–2366.

    CAS  Google Scholar 

  22. Golberg, D., Bando, Y., Bourgeois, L., et al., Large-Scale Synthesis and HRTEM Analysis of Single-Walled B-and N-Doped Carbon Nanotube Bundles, Carbon, 2000, vol. 38, no.14, pp. 2017–2027.

    CAS  Google Scholar 

  23. Golberg, D., Bando, Y., Kurashima, K., and Sato, T., Synthesis, HRTEM and Electron Diffraction Studies of B/N-Doped C and BN Nanotubes, Diamond Relat. Struct., 2001, vol. 10, no.1, pp. 63–67.

    CAS  Google Scholar 

  24. Hodak, M. and Girifalco, L.A., Ordered Phases of Fullerene Molecules Formed inside Carbon Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 67, no.7, art. 075419.

  25. Khlobystov, A.N., Britz, D.A., Ardavan, A., and Briggs, G., Observation of Ordered Phases of Fullerenes in Carbon Nanotubes, Phys. Rev. Lett., 2004, vol. 92, no.24, pp. 245507-1–245507-3.

    Google Scholar 

  26. Smith, B.W., Monthioux, M., and Luzzi, D.E., Encapsulated C60 in Carbon Nanotubes, Nature, 1998, vol. 396, no.6709, pp. 323–324.

    CAS  Google Scholar 

  27. Luzzi, D.E. and Smith, B.W., Carbon Cage Structures in Single Wall Carbon Nanotubes: A New Class of Materials, Carbon, 2000, vol. 38, no.11/12, pp. 1751–1756.

    CAS  Google Scholar 

  28. Ivanovskii, A.L., Fullerenes and Related Nanoparticles Encapsulated in Nanotubes: Synthesis, Properties, and Modelling of New Hybrid Nanostructures, Zh. Neorg. Khim., 2003, vol. 48, no.6, pp. 945–959.

    CAS  Google Scholar 

  29. Ivanovskii, A.L., Hybrid Nanomaterials: Structure and Properties of Carbon Peapods and Related Nanosystems, Al’tern. Energ. Ekol., 2004, no. 7(15), pp. 28–40.

    Google Scholar 

  30. Mickelson, W., Aloni, S., Han, W., et al., Packing C60 in Boron Nitride Nanotubes, Science, 2003, vol. 300, pp. 467–469.

    CAS  PubMed  Google Scholar 

  31. Hernandez, E., Meunier, V., and Smith, B.W., Fullerene Coalescence in Nanopeapods: A Path To Novel Tubular Carbon, Nano Lett., 2003, vol. 3, no.8, pp. 1037–1042.

    CAS  Google Scholar 

  32. Okada, S., Saito, S., and Oshiyama, A., Electronic and Geometric Structures of Multi-Walled BN Nanotubes, Physica B (Amsterdam), vol. 323, nos.1–4, pp. 224–226.

  33. Fuentes, G.G., Borowiak-Palen, E., Pichler, T., et al., Electronic Structure of Multi-Wall Boron Nitride Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 67, no.3, art. 035429.

  34. Okamoto, A., Kawakubo, T., Hiraoka, T., et al., Synthesis and Characterization of Multi-and Single-Wall Carbon Nanotubes by the Catalytic Vapor Deposition Method, Mol. Cryst. Liq. Cryst. Sci., 2002, vol. 387, pp. 317–322.

    Google Scholar 

  35. Vukovic, T., Damnjanovic, M., and Milosevic, I., Interaction between Layers of the Multi-Wall Carbon Nanotubes, Physica E (Amsterdam), 2003, vol. 16, no.2, pp. 259–268.

    CAS  Google Scholar 

  36. Porezag, D., Frauenheim, Th., Kohler, Th., et al., Construction of Tight-Binding-like Potentials on the Basis of Density-Functional Theory—Application to Carbon, Phys. Rev. B: Condens. Matter, 1995, vol. 51, no.19, pp. 12 947–12 957.

    CAS  Google Scholar 

  37. Koster, A.M., Geudtner, G., Goursot, A., et al., NRC, Canada, 2002.

  38. Xiang, H.J., Yang, J., Hou, J.G., and Zhu, Q., First-Principles Study of Small-Radius Single-Walled BN Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 68, no.3, art. 035427.

  39. Akdim, B., Pachter, R., Duan, X., and Wade Adams, W., Comparative Theoretical Study of Single-Wall Carbon and Boron-Nitride Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 67, no.24, art. 245404.

  40. Zhao, Q., Nardelli, M.B., and Bernholc, J., Ultimate Strength of Carbon Nanotubes: A Theoretical Study, Phys. Rev., 2002, vol. 65, no.14, art. 144105.

  41. Rafii-Tabar, H., Computational Modeling of Thermo-Mechanical and Transport Properties of Carbon Nanotubes, Phys. Rep., 2004, vol. 390, pp. 235–452.

    CAS  Google Scholar 

  42. Moon, W.H. and Hwang, H.J., Molecular-Dynamics Simulation of Structure and Thermal Behavior of Boron Nitride Nanotubes, Nanotecnology, 2004, vol. 15, pp. 431–434.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Neorganicheskie Materialy, Vol. 41, No. 6, 2005, pp. 687–695.

Original Russian Text Copyright © 2005 by Enyashin, Seifert, Ivanovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enyashin, A.N., Seifert, G. & Ivanovskii, A.L. Calculation of the Electronic and Thermal Properties of C/BN Nanotubular Heterostructures. Inorg Mater 41, 595–603 (2005). https://doi.org/10.1007/s10789-005-0176-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10789-005-0176-z

Keywords

Navigation