Inorganic Materials

, Volume 41, Issue 6, pp 595–603 | Cite as

Calculation of the Electronic and Thermal Properties of C/BN Nanotubular Heterostructures

  • A. N. Enyashin
  • G. Seifert
  • A. L. Ivanovskii


Modeling results are presented on the electronic, structural, and thermal properties of a (5,5)C@(17,0)BN-NT tubular heterostructure (a metal-like carbon nanotube inside a dielectric boron nitride nanotube) regarded as a prototype of nanocables. It is shown that the electronic properties of the nanocable remain unchanged up to about 3500 K. The properties of the nanocable are analyzed in comparison with those of a [C60]@(17,0)BN-NT peapod, a potential precursor to C/BN nanocables.


Inorganic Chemistry Boron Nitride Thermal Property Electronic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanaka, K., Yamabe, T., and Fuku, K., The Science and Technology of Carbon Nanotubes, Oxford: Elsevier, 1999.Google Scholar
  2. 2.
    Harris, P.J.F., Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: Cambridge Univ. Press, 1999.Google Scholar
  3. 3.
    Ivanovskii, A.L., Kvantovaya khimiya v materialovedenii. Nanotubulyarnye formy veshchestva (Quantum Chemistry in Materials Science: Nanotubular Materials), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1999.Google Scholar
  4. 4.
    Bernholc, J., Brenner, D., Nardelli, M.B., et al., Mechanical and Electrical Properties of Nanotubes, Annu. Rev. Mater. Res., 2002, vol. 32, pp. 347–375.Google Scholar
  5. 5.
    Iijima, S., Carbon Nanotubes: Past, Present, and Future, Physica B (Amsterdam), 2002, vol. 323, no.1, pp. 1–5.Google Scholar
  6. 6.
    Tenne, R. and Zettl, A.K., Nanotubes from Inorganic Materials, Top. Appl. Phys., 2001, vol. 80, pp. 81–112.Google Scholar
  7. 7.
    Tenne, R., Inorganic Nanoclusters with Fullerene-like Structure and Nanotubes, Prog. Inorg. Chem., 2001, vol. 50, pp. 269–315.Google Scholar
  8. 8.
    Buchachenko, A.L., Nanochemistry: A Direct Route to the High Technology of the New Century, Usp. Khim., 2002, vol. 72, no.5, pp. 419–436.Google Scholar
  9. 9.
    Ivanovskii, A.L., Noncarbon Nanotubes: Synthesis and Modeling, Usp. Khim., 2002, vol. 71, no.3, pp. 203–224.Google Scholar
  10. 10.
    Tenne, R., Inorganic Nanotubes and Fullerene-like Materials, Chem. Eur. J., 2002, vol. 8, no.23, pp. 5297–5304.Google Scholar
  11. 11.
    Stankevich, I.V. and Chernozatonskii, L.A., Tamm States and Quantum Dots in Carbon and Heteroatomic Nanotubes, Phys. Solid State, 1999, vol. 41, no.8, pp. 1386–1390.Google Scholar
  12. 12.
    Galpern, E.G., Pinyaskin, V.V., Stankevich, I.V., and Chernozatonskii, L.A., Heteroatomic Nanotubes with Quasi-One-Dimensional Superlattice Structure, J. Phys. Chem., vol. 101, no.5, pp. 705–709.Google Scholar
  13. 13.
    Chernozatonskii, L.A., Gal’perin, E.G., Stankevich, I.V., and Shimkus, Y.K., Nanotube C-BN Heterostructures: Electronic Properties, Carbon, 1999, vol. 37, no.1, pp. 117–121.Google Scholar
  14. 14.
    Meunier, V., Roland, C., Bernholc, J., and Nardelli, M.B., Electronic and Field Emission Properties of Boron Nitride/Carbon Nanotube Superlattices, Appl. Phys. Lett., 2002, vol. 81, no.1, pp. 46–48.Google Scholar
  15. 15.
    Choi, J., Kim, Y.H., Chang, K.J., and Tomanek, D., Itinerant Ferromagnetism in Heterostuctured C/BN Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 67, no.12, art. 12542.Google Scholar
  16. 16.
    Terrones, M., Grobert, N., and Terrones, H., Synthetic Routes to Nanoscale BxCyNz Architectures, Carbon, 2002, vol. 40, no.10, pp. 1665–1684.Google Scholar
  17. 17.
    Endo, M., Hayashi, T., Muramatsu, H., Kim, Y.H., et al., Coalescence of Double-Walled Carbon Nanotubes: Formation of Novel Carbon Bicables, Nano Lett., 2004, vol. 4, no.3, pp. 1451–1460.Google Scholar
  18. 18.
    Rubio, A., Miyamoto, Y., Blase, X., et al., Theoretical Study of One-Dimensional Chains of Metal Atoms in Nanotubes, Phys. Rev. B: Condens. Matter, 1996, vol. 53, no.7, pp. 4023–4026.Google Scholar
  19. 19.
    Monthioux, M., Filling Single-Wall Carbon Nanotubes, Carbon, 2002, vol. 40, no.10, pp. 1809–1823.Google Scholar
  20. 20.
    Golberg, D., Dorozhkin, P.S., Bando, Y., et al., Cables of BN-Insulated B-C-N Nanotubes, Appl. Phys. Lett., 2003, vol. 82, no.8, pp. 1375–1379.Google Scholar
  21. 21.
    Golberg, D., Han, W., Bando, Y., Bourgeois, L., et al., Fine Structure of Boron Nitride Nanotubes Produced from Carbon Nanotubes by a Substitution Reaction, J. Appl. Phys., 1999, vol. 86, no.4, pp. 2364–2366.Google Scholar
  22. 22.
    Golberg, D., Bando, Y., Bourgeois, L., et al., Large-Scale Synthesis and HRTEM Analysis of Single-Walled B-and N-Doped Carbon Nanotube Bundles, Carbon, 2000, vol. 38, no.14, pp. 2017–2027.Google Scholar
  23. 23.
    Golberg, D., Bando, Y., Kurashima, K., and Sato, T., Synthesis, HRTEM and Electron Diffraction Studies of B/N-Doped C and BN Nanotubes, Diamond Relat. Struct., 2001, vol. 10, no.1, pp. 63–67.Google Scholar
  24. 24.
    Hodak, M. and Girifalco, L.A., Ordered Phases of Fullerene Molecules Formed inside Carbon Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 67, no.7, art. 075419.Google Scholar
  25. 25.
    Khlobystov, A.N., Britz, D.A., Ardavan, A., and Briggs, G., Observation of Ordered Phases of Fullerenes in Carbon Nanotubes, Phys. Rev. Lett., 2004, vol. 92, no.24, pp. 245507-1–245507-3.Google Scholar
  26. 26.
    Smith, B.W., Monthioux, M., and Luzzi, D.E., Encapsulated C60 in Carbon Nanotubes, Nature, 1998, vol. 396, no.6709, pp. 323–324.Google Scholar
  27. 27.
    Luzzi, D.E. and Smith, B.W., Carbon Cage Structures in Single Wall Carbon Nanotubes: A New Class of Materials, Carbon, 2000, vol. 38, no.11/12, pp. 1751–1756.Google Scholar
  28. 28.
    Ivanovskii, A.L., Fullerenes and Related Nanoparticles Encapsulated in Nanotubes: Synthesis, Properties, and Modelling of New Hybrid Nanostructures, Zh. Neorg. Khim., 2003, vol. 48, no.6, pp. 945–959.Google Scholar
  29. 29.
    Ivanovskii, A.L., Hybrid Nanomaterials: Structure and Properties of Carbon Peapods and Related Nanosystems, Al’tern. Energ. Ekol., 2004, no. 7(15), pp. 28–40.Google Scholar
  30. 30.
    Mickelson, W., Aloni, S., Han, W., et al., Packing C60 in Boron Nitride Nanotubes, Science, 2003, vol. 300, pp. 467–469.PubMedGoogle Scholar
  31. 31.
    Hernandez, E., Meunier, V., and Smith, B.W., Fullerene Coalescence in Nanopeapods: A Path To Novel Tubular Carbon, Nano Lett., 2003, vol. 3, no.8, pp. 1037–1042.Google Scholar
  32. 32.
    Okada, S., Saito, S., and Oshiyama, A., Electronic and Geometric Structures of Multi-Walled BN Nanotubes, Physica B (Amsterdam), vol. 323, nos.1–4, pp. 224–226.Google Scholar
  33. 33.
    Fuentes, G.G., Borowiak-Palen, E., Pichler, T., et al., Electronic Structure of Multi-Wall Boron Nitride Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 67, no.3, art. 035429.Google Scholar
  34. 34.
    Okamoto, A., Kawakubo, T., Hiraoka, T., et al., Synthesis and Characterization of Multi-and Single-Wall Carbon Nanotubes by the Catalytic Vapor Deposition Method, Mol. Cryst. Liq. Cryst. Sci., 2002, vol. 387, pp. 317–322.Google Scholar
  35. 35.
    Vukovic, T., Damnjanovic, M., and Milosevic, I., Interaction between Layers of the Multi-Wall Carbon Nanotubes, Physica E (Amsterdam), 2003, vol. 16, no.2, pp. 259–268.Google Scholar
  36. 36.
    Porezag, D., Frauenheim, Th., Kohler, Th., et al., Construction of Tight-Binding-like Potentials on the Basis of Density-Functional Theory—Application to Carbon, Phys. Rev. B: Condens. Matter, 1995, vol. 51, no.19, pp. 12 947–12 957.Google Scholar
  37. 37.
    Koster, A.M., Geudtner, G., Goursot, A., et al., NRC, Canada, 2002.Google Scholar
  38. 38.
    Xiang, H.J., Yang, J., Hou, J.G., and Zhu, Q., First-Principles Study of Small-Radius Single-Walled BN Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 68, no.3, art. 035427.Google Scholar
  39. 39.
    Akdim, B., Pachter, R., Duan, X., and Wade Adams, W., Comparative Theoretical Study of Single-Wall Carbon and Boron-Nitride Nanotubes, Phys. Rev. B: Condens. Matter, 2003, vol. 67, no.24, art. 245404.Google Scholar
  40. 40.
    Zhao, Q., Nardelli, M.B., and Bernholc, J., Ultimate Strength of Carbon Nanotubes: A Theoretical Study, Phys. Rev., 2002, vol. 65, no.14, art. 144105.Google Scholar
  41. 41.
    Rafii-Tabar, H., Computational Modeling of Thermo-Mechanical and Transport Properties of Carbon Nanotubes, Phys. Rep., 2004, vol. 390, pp. 235–452.Google Scholar
  42. 42.
    Moon, W.H. and Hwang, H.J., Molecular-Dynamics Simulation of Structure and Thermal Behavior of Boron Nitride Nanotubes, Nanotecnology, 2004, vol. 15, pp. 431–434.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. N. Enyashin
    • 1
  • G. Seifert
    • 2
  • A. L. Ivanovskii
    • 2
  1. 1.Institute of Solid-State ChemistryUral Division, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institut fur Physikalische ChemieTechnische Universitat DresdenDresden 13Germany

Personalised recommendations