Skip to main content
Log in

Doping of optical fiber preforms via porous silica layer infiltration with salt solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

A process is described for reproducible deposition of porous layers uniform along the preform axis, and the effect of the nature of the solvent on the infiltration of salt solutions into the porous layer is analyzed in relation to the fabrication of fiber preforms with controlled doping level. Data are presented on the variation of the retention volume in the porous layer with sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. DiGiovanni, D.J. and Muendel, M.H., High-Power Fiber Lasers and Amplifiers, Opt. Photonics News, 1999, no. 1, pp. 26–30.

  2. Ueda, K. and Liu, A., Future of High-Power Fiber Lasers, Laser Phys., 1998, vol. 8, no.3, pp. 774–781.

    CAS  Google Scholar 

  3. Kurkov, A.S., Dianov, E.M., Paramonov, V.M., et al., 1.43-µm Fiber Laser for Medical Applications, Proc. SPIE-Int. Soc. Opt. Eng., 2000, vol. 4083, pp. 127–130.

    CAS  Google Scholar 

  4. Nagel, S.R., MacChesney, J.B., and Walker, K., An Overview of the MCVD Process and Performance, IEEE Trans. Microwave Theory Tech., 1982, vol. 30, no.4, pp. 305–322.

    Google Scholar 

  5. Poole, S.B., Payne, D.N., and Fermann, M.E., Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions, Electron. Lett., 1985, vol. 21, no.17, pp. 737–738.

    CAS  Google Scholar 

  6. Bocko, P.L., Rare-Earth-Doped Fibers by the Outside Vapor Deposition Process, OFC 1989, Tech. Dig., 1989, p. 20.

  7. Tumminelli, R.P., McCollum, B.C., and Snitzer, E., Fabrication of High-Concentration Rare-Earth Doped Optical Fibers Using Chelates, J. Lightwave Technol., 1990, vol. 8, no.11, pp. 1680–1683.

    CAS  Google Scholar 

  8. Stone, J. and Burrus, C.A., Neodymium-Doped Silica Lasers in End-Pumped Fiber Geometry, Appl. Phys. Lett., 1973, vol. 23, no.7, pp. 388–389.

    CAS  Google Scholar 

  9. Townsend, J.E., Poole, S.B., and Payne, D.N., Solution-Doping Technique for Fabrication of Rare-Earth-Doped Optical Fibres, Electron. Lett., 1987, vol. 23, no.7, pp. 329–331.

    Google Scholar 

  10. Ainslie, B.J., A Review of the Fabrication and Properties of Erbium-Doped Fibers for Optical Amplifiers, J. Lightwave Technol., 1991, vol. 9, no.2, pp. 220–227.

    CAS  Google Scholar 

  11. Gur’yanov, A.N. and Devyatykh, G.G., Fabrication of High-Purity Silica Optical Fibers by the Inside Deposition Process, Vysokochist. Veshchestva, 1990, no. 4, pp. 18–30.

  12. Dvoirin, V.V., Dianov, E.M., Mashinskii, V.M., et al., Absorption and Luminescent Properties of Cr4+-Doped Silica Optical Fibers, Kvantovaya Elektron. (Moscow), 2001, vol. 31, no.11, pp. 996–998.

    CAS  Google Scholar 

  13. Wood, D.L., Walker, K.L., MacChesney, J.B., et. al., Germanium Chemistry in the MCVD Process for Optical Fiber Fabrication, J. Lightwave Technol., 1987, vol. 5, no.2, pp. 277–285.

    Article  Google Scholar 

  14. Huang, Y.Y., Sarkar, A., and Schultz, P.C., Relationship between Composition, Density, and Refractive Index in Germania Silica Glasses, J. Non-Cryst. Solids, 1978, vol. 27, pp. 29–37.

    CAS  Google Scholar 

  15. Kirchhof, J., Unger, S., Grau, L., et al., A New MCVD Technique for Increased Efficiency of Dopant Incorporation in Optical Fibre Fabrication, Cryst. Res. Technol., 1990, vol. 25, no.2, pp. 29–34.

    Google Scholar 

  16. Vienne, G.G., Caplen, J.E., Dong, L., et al., Fabrication and Characterization of Yb3+: Er3+ Phosphosilicate Fibers for Lasers, J. Lightwave Technol., 1998, vol. 16, no.11, pp. 1990–2001.

    CAS  Google Scholar 

  17. Kasik, I., Matejec, V., Pospisilova, M., et al., Silica Optical Fibers with Yb3+ and Er3+, Proc. SPIE-Int. Soc. Opt. Eng., 1996, vol. 2777, pp. 71–79.

    CAS  Google Scholar 

  18. Simpkins, P.G., Greenberg-Kosinski, S., MacChesney, J.B., Thermophoresis: The Mass Transfer Mechanism in Modified Chemical Vapor Deposition, J. Appl. Phys., 1979, vol. 50, no.9, pp. 5676–5681.

    CAS  Google Scholar 

  19. Scherer, G.W., Sintering of Low-Density Glasses: I. Theory, J. Am. Ceram. Soc., 1977, vol. 60, no.5/6, pp. 236–239.

    CAS  Google Scholar 

  20. Azbel’, A.Yu., Vasil’ev, V.N., and Khoruzhnikov, S.E., Sintering Processes in Fiber Preform Fabrication, Fiz. Khim. Stekla, 1988, vol. 14, no.5, pp. 749–757.

    CAS  Google Scholar 

  21. Rahaman, M.N., DeJonghe, L.C., Scherer, G.W., and Brook, R.J., Creep and Densification during Sintering of Glass Powder Compacts, J. Am. Ceram. Soc., 1987, vol. 70, no.10, pp. 766–774.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 363–368.

Original Russian Text Copyright © 2005 by Khopin, Umnikov, Gur’yanov, Bubnov, Senatorov, Dianov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khopin, V.F., Umnikov, A.A., Gur’yanov, A.N. et al. Doping of optical fiber preforms via porous silica layer infiltration with salt solutions. Inorg Mater 41, 303–307 (2005). https://doi.org/10.1007/s10789-005-0128-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10789-005-0128-7

Keywords

Navigation