Inorganic Materials

, Volume 41, Issue 2, pp 164–171 | Cite as

Doping effect on the Raman spectrum and photorefractive properties of LiNbO3 crystals

  • N. V. Sidorov
  • P. G. Chufyrev
  • M. N. Palatnikov
  • N. N. Mel’nik
  • V. T. Kalinnikov


Raman scattering spectroscopy is used to assess the cation ordering and photorefractive effect in nominally undoped and doped (Mg2+ , Gd3+ , and Y3+) LiNbO3 crystals with the stoichiometric and congruent compositions. The results demonstrate that, in a certain range of (low) Mg2+ and Gd3+ concentrations, doping increases the degree of cation ordering and notably reduces the magnitude of the photorefractive effect. Higher Mg2+ and Gd3+ concentrations lead to gradual cation disordering, as evidenced by the broadening of Raman bands and the increase in the magnitude of the photorefractive effect. Stoichiometric single crystals exhibit the strongest photorefractive effect because, owing to the lower defect density, they contain a lower concentration of shallow electron traps (sticking levels near the bottom of the conduction band). As a consequence, the efficiency of the alternative radiative-recombination channel due to the sticking levels drops markedly, and most of the photoexcited electrons are captured by deeper traps. It is shown for the first time that the intensity of the band corresponding to the stretching mode of the bridging oxygens in the NbO6 octahedra is sensitive to dipole ordering in the cation sublattice: an increase in the degree of dipole ordering (in spontaneous polarization) in response to compositional changes is accompanied by an increase in the intensity of the band in question.


LiNbO3 Spontaneous Polarization Deep Trap Cation Sublattice Raman Scatter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuzminov, Yu. S., Elektroopticheskii i nelineino-opticheskii kristall niobata litiya(Electro-Optic and Nonlinear Optical Lithium Niobate Crystals), Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spektr, polyaritony (Lithium Niobate: Defects, Photorefractive Properties, Vibrational Spectrum, and Polaritons), Moscow: Nauka, 2003.Google Scholar
  3. 3.
    Blistanov, A.A., Kristally kvantovoi i nelineinoi optiki (Crystals for Quantum and Nonlinear Optics), Moscow: Mosk. Inst. Stali i Splavov, 2000.Google Scholar
  4. 4.
    Sidorov, N.V., Palatnikov, M.N., and Kalinnikov, V.T., Raman Spectra and Structure of Lithium Niobate Crystals, Opt. Spektrosk., 1997, vol. 82, no. 1, pp. 38–45.Google Scholar
  5. 5.
    Palatnikov, M.N., Sidorov, N.V., Biryukova, I.V., et al., Structural Ordering and Optical Properties of Doped Lithium Niobate Crystals, Perspekt. Mater., 2003, no. 4, pp. 48–54.Google Scholar
  6. 6.
    Malovichko, G.I., Grachev, V.G., Yurchenko, L.P., et al., Improvement of LiNbO3 Microstructure by Crystal Growth with Potassium, Phys. Status Solidi A, 1992, vol. 133, p. K29.Google Scholar
  7. 7.
    Sidorov, N.V. and Serebryakov, Yu. A., Defect Structure and Phase Diagram of Lithium Niobate, Ferroelectrics, 1994, vol. 160, pp. 191–205.Google Scholar
  8. 8.
    Sidorov, N.V., Palatnikov, M.N., Serebryakov, Yu. A., and Kalinnikov, V.T., Effect of Nonstoichiometry on the Structure, Properties, and Raman Spectra of Lithium Niobate Crystals, Neorg. Mater.,1997, vol. 33, no. 4, pp. 496–506 [Inorg. Mater. (Engl. Transl.), vol. 33, no. 4, pp. 419–427].Google Scholar
  9. 9.
    Sidorov, N.V. and Serebryakov, Yu. A., Trudy II mezh-dunarodnoi konferentsii po real’noi strukture i svoist-vam atsentrichnykh kristallov (Proc. II Int. Conf. on the Structural Perfection and Properties of Noncentrosymmetric Crystals), Aleksandrov: VNIISIMS, 1995, pp. 327–337.Google Scholar
  10. 10.
    The Raman Effect, vol. 2: Applications, Anderson, A., Ed., New York: Marcel Dekker, 1973. Translated under the title Primenenie spektrov kombinatsionnogo rasseyaniya, Moscow: Mir, 1977.Google Scholar
  11. 11.
    Anik’ev, A.A., Sidorov, N.V., and Serebryakov, Yu. A., Zh. Prikl. Spektrosk., 1992, vol. 56, no. 4, pp. 670–672.Google Scholar
  12. 12.
    Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1963. Translated under the title Infrakrasnye spektry neorga-nicheskikh i koordinatsionnykh soedinenii, Moscow: Mir, 1966.Google Scholar
  13. 13.
    Palatnikov, M.N., Sidorov, N.V., and Kalinnikov, V.T., Segnetoelektricheskie tverdye rastvory na osnove oksidnykh soedinenii niobiya i tantala (Ferroelectric Solid Solutions Based on Niobium and Tantalum Oxide Compounds), St. Petersburg: Nauka, 2001.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • N. V. Sidorov
    • 1
  • P. G. Chufyrev
    • 1
  • M. N. Palatnikov
    • 1
  • N. N. Mel’nik
    • 2
  • V. T. Kalinnikov
    • 1
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Scientific CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  2. 2.Lebedev Institute of PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations