Skip to main content

Advertisement

Log in

Involvement of central opioid receptors in protective effects of methadone on experimental colitis in rats

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Purpose

There are several lines of evidence on the protective roles of opioids in gastrointestinal inflammatory conditions. This study aims to distinguish the central and peripheral roles of methadone, a non-selective opioid receptor agonist, in an acute model of ulcerative colitis in male rats.

Methods

Ulcerative colitis was induced by intrarectal administration of acetic acid 4%. Methadone was injected subcutaneously (s.c.), 5 and 10 mg/kg, and intracerebroventricular (i.c.v.), 50 and 300 ng/rat. Opioid antagonists were employed. Methylnaltrexone (MNTX; 5 mg/kg, i.p.), a peripherally acting opioid receptor antagonist, and naltrexone (NTX; 5 mg/kg, i.p. and 10 ng/rat, i.c.v.), a peripherally and centrally acting opioid receptor antagonist were injected before methadone (10 mg/kg, s.c. and or 300 ng/rat, i.c.v.) administration. NTX (5 mg/kg, i.p. and 10 ng/rat, i.c.v.) were administered 30 min prior to administration of methadone (10 mg/kg, s.c. and 300 ng/rat, i.c.v.), respectively. MNTX (5 mg/kg, i.p.) was injected 30 min prior to methadone (10 mg/kg, s.c.). Seventy-two hours following colitis induction, macroscopic and microscopic mucosal lesions, and the colonic levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were determined.

Results

Methadone (300 ng/rat, i.c.v.) and Methadone (5 and 10 mg/kg, s.c.) improved the macroscopic and microscopic scores through opioid receptors. Also, a significant reduction in TNF-α and IL-1β was observed. Peripherally and centrally injected NTX significantly reversed methadone 10 mg/kg s.c. anti-inflammatory effects while MNTX could not completely reverse this effect. Moreover, centrally administered methadone (300 ng/rat) showed the anti-inflammatory effect which was reversed by central administration of NTX (10 ng/rat).

Conclusions

The opioid receptors mainly the central opioid receptors may mediate the protective actions of methadone on the experimental model of inflammatory bowel disease in rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Hashimi M, Scott SW, Thompson JP, Lambert DG (2013) Opioids and immune modulation: more questions than answers. Br J Anaesth 111:80–88

    Article  CAS  PubMed  Google Scholar 

  • Altschuler SM, Escardo J, Lynn RB, Miselis RR (1993) The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology 104:502–509

    Article  CAS  PubMed  Google Scholar 

  • Amirshahrokhi K, Dehpour AR, Hadjati J, Sotoudeh M, Ghazi-Khansari M (2008) Methadone ameliorates multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Toxicol Appl Pharmacol 232:119–124

    Article  CAS  PubMed  Google Scholar 

  • Antonioli L, Fornai M, Colucci R, Ghisu N, Da Settimo F, Natale G, Kastsiuchenka O et al (2007) Inhibition of adenosine deaminase attenuates inflammation in experimental colitis. J Pharmacol Exp Ther 322(2):435–442

    Article  CAS  PubMed  Google Scholar 

  • Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. The Lancet 369:1641–1657

    Article  CAS  Google Scholar 

  • Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139:2102–2112

    Article  CAS  PubMed  Google Scholar 

  • Bidlack JM (2000) Detection and function of opioid receptors on cells from the immune system. Clin Diagn Lab Immunol 7(5):719–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonaz B (2007) The cholinergic anti-inflammatory pathway and the gastrointestinal tract. Gastroenterology 133:1370–1373

    Article  CAS  PubMed  Google Scholar 

  • Bonaz BL, Bernstein CN (2013) Brain–gut interactions in inflammatory bowel disease. Gastroenterology 144:36–49

    Article  PubMed  Google Scholar 

  • Bonaz B, Sinniger V, Pellissier S (2017) Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J interna med 282(1):46–63

    Article  CAS  Google Scholar 

  • Borron SW, Monier C, Risede P, Baud FJ (2002) Flunitrazepam variably alters morphine, buprenorphine, and methadone lethality in the rat. Hum Exp Toxico 21(11):599–605

    Article  CAS  Google Scholar 

  • Brown DR, Goldberg LI (1985) The use of quaternary narcotic antagonists in opiate research. Neuropharmacology 24(3):181–191

    Article  CAS  PubMed  Google Scholar 

  • Bryant HU, Bernton EW, Holaday JW (1987) Immunosuppressive effects of chronic morphine treatment in mice. Life Sci 41:1731–1738

    Article  CAS  PubMed  Google Scholar 

  • Burton MB, Gebhart GF (1998) Effects of kappa-opioid receptor agonists on responses to colorectal distension in rats with and without acute colonic inflammation. J Pharmacol Exp Ther 285:707–715

    CAS  PubMed  Google Scholar 

  • Chen W, Taché Y, Marvizón JC (2018) Corticotropin-releasing factor in the brain and blocking spinal descending signals induce hyperalgesia in the latent sensitization model of chronic pain. Neuroscience 381:149–158

    Article  CAS  PubMed  Google Scholar 

  • Chugh SS, Socoteanu C, Reinier K, Waltz J, Jui J, Gunson K (2008) A community-based evaluation of sudden death associated with therapeutic levels of methadone. Am J Med 121:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins S, Verma-Gandhu M (2006) The putative role of endogenous and exogenous opiates in inflammatory bowel disease. Gut 55:756–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneshmand A, Rahimian R, Mohammadi H, Ejtemaee-Mehr S, Tavangar SM, Kelishomi RB, Dehpour AR (2009) Protective effects of lithium on acetic acid-induced colitis in rats. Dig Dis Sci 54:1901–1907

    Article  CAS  PubMed  Google Scholar 

  • Dieleman LA, Palmen MJ, Akol H, Bloemena E, Peña AS, Meuwissen SG, Van Rees EP (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl JR, Claxson AW, Blake DR, Morris CJ (1994) Proinflammatory effects of morphine in the rat adjuvant arthritis model. Int J Tissue React 16:163–170

    CAS  PubMed  Google Scholar 

  • Eisenstein TK, Hilburger ME (1998) Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol 83:36–44

    Article  CAS  PubMed  Google Scholar 

  • Elson CO, Sartor RB, Tennyson GS, Riddell H (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367

    Article  CAS  PubMed  Google Scholar 

  • Fakhraei N, Abdolghaffari AH, Delfan B, Abbasi A, Rahimi N, Khansari A, Rahimian R, Dehpour AR (2014) Protective effect of hydroalcoholic olive leaf extract on experimental model of colitis in rat: involvement of nitrergic and opioidergic systems. Phytother Res 28:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Fecho K, Maslonek KA, Dykstra LA, Lysle DT (1996) Assessment of the involvement of central nervous system and peripheral opioid receptors in the immunomodulatory effects of acute morphine treatment in rats. J Pharmacol Exp Ther 276:626–636

    CAS  PubMed  Google Scholar 

  • Greenwood-Van Meerveld B, Johnson AC, Schulkin J, Myers DA (2006) Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Res 1071:91–96

    Article  CAS  PubMed  Google Scholar 

  • Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Wang JM, Oppenheim JJ (1998) Opiate inhibition of chemokine-induced chemotaxis. Ann N Y Acad Sci 840:9–20

    Article  CAS  PubMed  Google Scholar 

  • Gyires K, Budavári I, Fürst S, Molnár I (1985) Morphine inhibits the carrageenan-induced oedema and the chemoluminescence of leucocytes stimulated by zymosan. J Pharm Pharmacol 37:100–104

    Article  CAS  PubMed  Google Scholar 

  • Hanauer SB (2007) The benefits of loperamide in the treatment of patients with IBS or IBD. Introduction. Rev gastroenterol disord 7:S1

    PubMed  Google Scholar 

  • Hashemizadeh S, Sardari M, Rezayof A (2014) Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference. Prog Neuropsychopharmacol Biol Psychiatry 51:65–71

    Article  CAS  PubMed  Google Scholar 

  • Heydarpour P, Rahimian R, Fakhfouri G, Khoshkish S, Fakhraei N, Salehi-Sadaghiani M, Wang H, Abbasi A, Dehpour AR, Ghia JE (2016) Behavioral despair associated with a mouse model of Crohn’s disease: role of nitric oxide pathway. Prog Neuropsychopharmacol Biol Psychiatry 64:131–141

    Article  CAS  PubMed  Google Scholar 

  • Hua S (2014) Development of an effective topical liposomal formulation for localized analgesia and anti-inflammatory actions in the complete Freund’s adjuvant rodent model of acute inflammatory pain. Pain Physician 17:E719–E735

    PubMed  Google Scholar 

  • Janecka A, Fichna J, Janecki T (2004) Opioid receptors and their ligands. Curr Top Med Chem 4:1–17

    Article  CAS  PubMed  Google Scholar 

  • Kafami L, Etesami I, Felfeli M, Enayati N, Ghiaghi R, Aminian A, Dehpour A (2013) Methadone diminishes neuroinflammation and disease severity in EAE through modulating T cell function. J Neuroimmunol 255:39–44

    Article  CAS  PubMed  Google Scholar 

  • Khalifeh S, Fakhfouri G, Mehr SE, Mousavizadeh K, Dehpour AR, Khodagholi F, Kazmi S, Rahimian R (2015) Beyond the 5-HT3 receptors: a role for α7nACh receptors in neuroprotective aspects of tropisetron. Hum Exp Toxicol 34:922–931

    Article  CAS  PubMed  Google Scholar 

  • Levine JD, Moskowitz MA, Basbaum AI (1985) The contribution of neurogenic inflammation in experimental arthritis. J Immunol 135(2 Suppl):843s–847s

    CAS  PubMed  Google Scholar 

  • Liu SJ, Roerig DL, Wang RI (1983) Brain and plasma levels of methadone and their relationships to analgesic activity of methadone in rats. Drug Metab Dispos 11:335–338

    CAS  PubMed  Google Scholar 

  • Lysle DT, Coussons-Read ME (1995) Mechanisms of conditioned immunomodulation. Int J Immunopharmacol 17:641–647

    Article  CAS  PubMed  Google Scholar 

  • Mackner LM, Clough-Paabo E, Pajer K, Lourie A, Crandall WV (2011) Psychoneuroimmunologic factors in inflammatory bowel disease. Inflamm Bowel Dis 17:849–857

    Article  PubMed  Google Scholar 

  • Mahgoub A, El-Medany A, Mustafa A, Arafah M, Moursi M (2005) Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats. Toxicol Appl Pharmacol 205:43–52

    Article  CAS  PubMed  Google Scholar 

  • McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ (2001) Opioids, opioid receptors, and the immune response. Drug Alcohol Depend 62:111–123

    Article  CAS  PubMed  Google Scholar 

  • Medany A, Mahgoub A, Mustafa A, Arafa M, Morsi M (2005) The effects of selective cyclooxygenase-2 inhibitors, celcoxib and rofecoxib, on experimental colitis induced by acetic acid in rats. Eur J Pharmacol 507:291–295

    Article  PubMed  Google Scholar 

  • Meregnani J, Clarençon D, Vivier M, Peinnequin A, Mouret C, Sinniger V, Picq C, Job A, Canini F, Jacquier-Sarlin M, Bonaz B (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci 160:82–89

    Article  CAS  PubMed  Google Scholar 

  • Morris DD, Moore JN (1989) Antibody titres to core lipopolysaccharides in horses with gastrointestinal disorders which cause colic. Equine Vet J Suppl7:29–32

    Article  Google Scholar 

  • Mousavizadeh K, Rahimian R, Fakhfouri G, Aslani FS, Ghafourifar P (2009) Anti-inflammatory effects of 5-HT3 receptor antagonist, tropisetron on experimental colitis in rats. Eur J Clin Invest 39:375–383

    Article  CAS  PubMed  Google Scholar 

  • Owczarek D, Cibor D, Mach T, Cieśla A, Pierzchała-Koziec K, Sałapa K, Kuśnierz-Cabała B (2011) Met-enkephalins in patients with inflammatory bowel diseases. Adv Med Sci 56:158–164

    Article  CAS  PubMed  Google Scholar 

  • Pakkanen JS, Nousiainen H, Yli-Kauhaluoma J, Kylänlahti I, Möykkynen T, Korpi ER, Peng JH, Lukas RJ, Ahtee L, Tuominen RK (2005) Methadone increases intracellular calcium in SH-SY5Y and SH-EP1-hα7 cells by activating neuronal nicotinic acetylcholine receptors. J Neurochem 94:1329–1341

    Article  CAS  PubMed  Google Scholar 

  • Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 23:41–45

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Perez-Navarro R, Ballester I, Zarzuelo A, S¢anchez de Medina F (2005) Disturbances in epithelial ionic secretion in different experimental models of colitis. Life Sci 76:1489–1501

    Article  CAS  PubMed  Google Scholar 

  • Peterson PK, Molitor TW, Chao CC (1998) The opioid–cytokine connection. J Neuroimmunol 83:63–69

    Article  CAS  PubMed  Google Scholar 

  • Philippe D, Dubuquoy L, Groux H, Brun V, Chuoï-Mariot MT, Gaveriaux-Ruff C, Colombel JF, Kieffer BL, Desreumaux P (2003) Anti-inflammatory properties of the μ opioid receptor support its use in the treatment of colon inflammation. J Clin Invest 111:1329–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pol O, Puig MM (2004) Expression of opioid receptors during peripheral inflammation. Curr Top Med Chem 4:51–61

    Article  CAS  PubMed  Google Scholar 

  • Pol O, Ferrer I, Puig MM (1994) Diarrhea associated with intestinal inflammation increases the potency of mu and delta opioids on the inhibition of gastrointestinal transit in mice. J Pharmacol Exp Ther 270:386–391

    CAS  PubMed  Google Scholar 

  • Porcher C, Sinniger V, Juhem A, Mouchet P, Bonaz B (2004) Neuronal activity and CRF receptor gene transcription in the brains of rats with colitis. Am J Physiol Gastrointest Liver Physiol 287:G803–G814

    Article  CAS  PubMed  Google Scholar 

  • Rahimian R, Zirak MR, Keshavarz M, Fakhraei N, Mohammadi-Farani A, Hamdi H, Mousavizadeh K (2016) Involvement of PPARγ in the protective action of tropisetron in an experimental model of ulcerative colitis. Immunopharmacol Immunotoxicol 38:432–440

    Article  CAS  PubMed  Google Scholar 

  • Ricardo Buenaventura M, Rajive Adlaka M, Nalini Sehgal M (2008) Opioid complications and side effects. Pain Physician 11:S105–S120

    PubMed  Google Scholar 

  • Rogers TJ, Peterson PK (2003) Opioid G protein-coupled receptors: signals at the crossroads of inflammation. Trends Immunol 24:116–121

    Article  CAS  PubMed  Google Scholar 

  • Sengupta JN, Snider A, Su X, Gebhart GF (1999) Effects of kappa opioids in the inflamed rat colon. Pain 79:175–185

    Article  CAS  PubMed  Google Scholar 

  • Seyedabadi M, Rahimian R, Ghia JE (2018) The role of alpha7 nicotinic acetylcholine receptors in inflammatory bowel disease: involvement of different cellular pathways. Expert Opin Ther Targets 22:161–176

    Article  CAS  PubMed  Google Scholar 

  • Shahabi NA, Burtness MZ, Sharp BM (1991) N-acetyl-β-endorphin1–31 antagonizes the suppressive effect of β-endorphin1–31 on murine splenocyte proliferation via a naloxone-resistant receptor. Biochem Biophys Res Commun 175:936–942

    Article  CAS  PubMed  Google Scholar 

  • Shannon HE, Lutz EA (2002) Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats. Neuropharmacology 42:253–261

    Article  CAS  PubMed  Google Scholar 

  • Smith JP, Bingaman SI, Ruggiero F, Mauger DT, Mukherjee A, McGovern CO, Zagon IS (2011) Therapy with the opioid antagonist naltrexone promotes mucosal healing in active Crohn’s disease: a randomized placebo-controlled trial. Dig Dis Sci 56:2088–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub RH, Wolff C, Fassold A, Hofbauer R, Chover-Gonzalez A, Richards LJ, Jessop DS (2008) Antiinflammatory role of endomorphins in osteoarthritis, rheumatoid arthritis, and adjuvant-induced polyarthritis. Arthritis Rheum 58:456–466

    Article  CAS  PubMed  Google Scholar 

  • Taché Y, Bernstein CN (2009) Evidence for the role of the brain–gut axis in inflammatory bowel disease: depression as cause and effect? Gastroenterology 136:2058

    Article  PubMed  Google Scholar 

  • Walker JS (2003) Anti-Inflammatory effects of opioids. In: Machelska H, Stein C (eds) Immune mechanisms of pain and analgesia. ©Eurekah.com and Kluwer Academic/Plenum Publishers, Dordrecht

    Google Scholar 

  • Walker JS, Chandler AK, Wilson JL, Binder W, Day RO (1996) Effect of μ-opioids morphine and buprenorphine on the development of adjuvant arthritis in rats. Inflamm Res 45:557–563

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Moss J, Yuan CS (2003) Opioid-induced immunosuppression: is it centrally mediated or peripherally mediated? Biochem Pharmacol 65:1761–1766

    Article  CAS  PubMed  Google Scholar 

  • Willette RE, Barnett G (1981) Narcotic antagonists: naltrexone pharmacochemistry and sustained-release preparations. Department of Health and Human Services, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute on Drug Abuse, Division of Research

  • Yamada T, Zimmerman BJ, Specian RD, Grisham MB (1991) Role of neutrophils in acetic acid-induced colitis in rats. Inflammation 15:399–411

    Article  CAS  PubMed  Google Scholar 

  • Zagon IS, McLaughlin PJ (2011) Targeting opioid signaling in Crohn’s disease: new therapeutic pathways. Expert Rev Gastroenterol Hepatol 5:555–558

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by a Grant from Tehran University of Medical Sciences, Tehran, Iran (No. 16555-15-04-90).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhraei, N., Javadian, N., Rahimian, R. et al. Involvement of central opioid receptors in protective effects of methadone on experimental colitis in rats. Inflammopharmacol 26, 1399–1413 (2018). https://doi.org/10.1007/s10787-018-0538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0538-1

Keywords

Navigation