Skip to main content

Advertisement

Log in

Is the pharmaceutical industry’s preoccupation with the monotherapy drug model stifling the development of effective new drug therapies?

  • Commentary
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Drug discovery and development is heavily biased towards the development of monotherapies. Screening, testing, and evaluation of mono-entity drugs are generally much simpler than drug combinations, and are generally easier to get approval from the regulatory authorities for their clinical use. However, monotherapy drugs may not have optimal activity, may have associated toxicities, or may lose activity over time as their target develops resistance. Drug combinations, often developed from existing monotherapies, may have improved efficacy and/or be less toxic. Furthermore, the existing drugs which have lost efficacy due to the development of resistance can often be re-activated by combining them with other chemical entities. Thus, whilst the current climate for drug approval, registration, and clinical use drives the majority of drug development research towards the development of monotherapies, combinations are often a substantial improvement on the original drug. This commentary examines monotherapy and combinational therapy models and discusses the benefits and limitations of each model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams BM, Banks HT, Kwon HD et al (2005) Dynamic multidrug therapies for HIV: optimal and STI control approaches. J Comput Appl Math 184(1):10–49

    Article  Google Scholar 

  • Adel SPR, Prakash J (2010) Chemical composition and antioxidant properties of ginger root (Zingiber officinale). J Med Plant Res 4(24):2674–2679

    Article  Google Scholar 

  • Ahmed A, Azim A, Gurjar M et al (2014) Current concepts in combination antibiotic therapy for critically ill patients. Indian J Crit Care Med 18:310–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Airaksinen S, Karajalainen M, Kivikero N et al (2005) Excipient selection can significantly affect solid-state phase transformation in formulation during wet granulation. AAPS Pharmscitech 6:E311–E322

    Article  PubMed  PubMed Central  Google Scholar 

  • Akihisa T, Takahashi A, Kikuchi T et al (2011) The melanogenesis-inhibitory, anti-inflammatory, and chemopreventative effects of liminoids in n-hexane extract of Azadirachta indica A. Juss. (Neem) seeds. J Oleo Sci 60:53–59

    Article  PubMed  CAS  Google Scholar 

  • Akram M, Uddin S, Ahmed A et al (2010) Curcuma longa and curcumin: a review article. R J Biol Plant Biol 55(2):65–70

    Google Scholar 

  • Arrowsmith J (2011) Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov 10(2):87

    Article  PubMed  CAS  Google Scholar 

  • Babu NP, Pandikumar P, Ignacimuthu S (2011) Lysosomal membrane stabilisation and anti-inflammatory activity of Clerodendrum phlomidis L.f., a traditional medicinal plant. J Ethnopharmacol 135(3):779–785

    Article  PubMed  Google Scholar 

  • Banno N, Akihisa T, Yasukawa K et al (2006) Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. J Ethnopharmacol 107(2):249–253

    Article  PubMed  CAS  Google Scholar 

  • Biggs I, Sirdaarta J, White A et al (2016a) GC-MS analysis of frankincense extracts which inhibit the growth of bacterial triggers of selected autoimmune diseases. Pharmacogn Commun 6(1):10–22. https://doi.org/10.5530/pc.2016.1.3

    Article  CAS  Google Scholar 

  • Biggs I, Sirdaarta J, White A et al (2016b) GC–MS analysis of Commiphora molmol oleo-resin extracts which inhibit the growth of bacterial triggers of selected autoimmune diseases. Pharmacogn J 8(3):191–202. https://doi.org/10.5530/pj.2016.3.4

    Article  CAS  Google Scholar 

  • Biswas K, Chattopadhyay I, Banerjee RK et al (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 11:1336–1345

    Google Scholar 

  • Byeon SE, Chung JY, Lee YG et al (2008) In vitro and in vivo anti-inflammatory effects of taheebo, a water extract from the inner bark of Tabebuia avellanedae. J Ethnopharmacol 119:145–152

    Article  PubMed  Google Scholar 

  • Capasso A (2013) Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules 18:690–700

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carey AN, Fisher DR, Joseph JA et al (2013) The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. Nutr Neurosci 16(1):13–20

    Article  PubMed  CAS  Google Scholar 

  • Cheesman MJ, Ilanko A, Blonk B et al (2017) Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 11(22):57–72. https://doi.org/10.4103/phrev.phrev_21_17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cock IE (2014) The early stages of rheumatoid arthritis: new targets for the development of combinational drug therapies. OA Arthritis 2(1):5

    Google Scholar 

  • Cock IE (2015a) The genus Aloe: phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. In: Rainsford KD et al (eds) Novel natural products: therapeutic effects in pain, arthritis and gastro-intestinal diseases, progress in drug research 70. Springer, Basel, pp 179–235

    Chapter  Google Scholar 

  • Cock IE (2015b) The safe usage of herbal medicines: counter-indications, cross-reactivity and toxicity. Pharmacogn Commun 5(1):2–50. https://doi.org/10.5530/pc.2015.1.2

    Article  CAS  Google Scholar 

  • Cock IE (2015c) The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacology 23(5):203–229. https://doi.org/10.1007/s10787-015-0246-z

    Article  PubMed  CAS  Google Scholar 

  • Dale J, Alcorn N, Capell H et al (2007) Combination therapy for rheumatoid arthritis: methotrexate and sulfasalazine together or with other DMARDs. Nat Clin Pract Rheumatol 3(8):450–458

    Article  PubMed  CAS  Google Scholar 

  • El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 11(1):632–638

    Article  Google Scholar 

  • Feltonstein MW, Schühly W, Warnick JE et al (2004) Anti-inflammatory and anti-hyperalgesic effects of sesquiterpine lactones from Magnolia and Bear’s foot. Pharmacol Biochem Behav 79(2):299–302

    Article  CAS  Google Scholar 

  • Franklin SJ, Dickinson SE, Karlage KL et al (2014) Stability of sulforaphane for topical formulation. Drug Dev Ind Pharm 40(4):494–502

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Zhou H, Wang S et al (2014) Glycyrol suppresses collagen-induced arthritis by regulating autoimmune and inflammatory responses. PLoS One 9:e98137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gayathri B, Manjula N, Vinaykumar KS et al (2007) Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO and MAP kinases. Int Immunopharmacol 7(4):473–482

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg H, Deharo E (2011) A call for using natural compounds in the development of new antimalarial treatments - an introduction. Malaria J 10(Suppl 1). https://doi.org/10.1186/1475-2875-10-S1-SW1

  • Grzanna R, Lindmark L, Frondoza CG (2005) Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food 8(2):125–132

    Article  PubMed  CAS  Google Scholar 

  • Gyurkovska V, Alipieva K, Maciul A et al (2011) Anti-inflammatory activity of Devil’s claw in vitro systems and their active constituents. Food Chem 125(1):171–178

    Article  CAS  Google Scholar 

  • Hernández-Ortega M, Ortiz-Moreno A, Hernández-Navarro MD, et al (2012) Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.) J Biomed Biotechnol (Article ID 524019)

  • Hodge G, Hodge S, Han P (2002) Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry 48:209–215

    Article  PubMed  CAS  Google Scholar 

  • Jang MH, Lim S, Han SM et al (2003) Harpagophytum procumbens suppresses lipopolysaccharide-stimulated expressions of cyclooxygenase-2 and inducible nitric oxide synthase in fibroblast cell line L929. J Pharmacol Sci 93:367–371

    Article  PubMed  CAS  Google Scholar 

  • Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14(2):141–153

    PubMed  Google Scholar 

  • Khdair A, Chen D, Patil Y et al (2010) Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release 141:137–144

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Kim SJ (2014) Overexpression of microRNA-25 by withaferin A induces cyclooxygenase-2 expression in rabbit articular chondrocytes. J Pharmacol Sci 125:83–90

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Sancheti SA, Sancheti SS et al (2010) Effect of 1,2,3,4,6-penta-O-galloyl-beta-d-glucose on elastase and hyaluronidase activities and its type II collagen expression. Acta Pol Pharm 67:145–150

    PubMed  CAS  Google Scholar 

  • Lafeber M, Spiering W, van der Graaf Y et al (2013) The combined use of aspirin, a statin, and blood pressure-lowering agents (polypill components) and the risk of vascular morbidity and mortality in patients with coronary artery disease. Am Heart J 166(2):282–289

    Article  PubMed  CAS  Google Scholar 

  • Lebaratoux P, Sirdaarta J, Rayan P et al (2016) An evaluation of the antibacterial, anti-Giardial, anticancer and toxicity properties of selected nut extracts. Pharmacogn Commun 6(3):174–184. https://doi.org/10.5530/pc.2016.3.7

    Article  CAS  Google Scholar 

  • Li XY, Zong SL, Chen FY et al (2012) Three novel immunosuppressive steroidal glycosides from the stems of Stephanotis mucronata. Nat Prod Commun 7(10):1269–1270

    PubMed  Google Scholar 

  • Li XJ, Yang YJ, Li YS et al (2016) α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J Ethnopharmacol 179(17):22–26

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Zhong JY, Gao EN et al (2014) Effects of glycyrrhizin and licorice flavonoids on LPS-induced cytokines expression in macrophages. China J Chin Mater Med 39(19):3841–3845

    CAS  Google Scholar 

  • Maione F, Russo R, Khan H et al (2016) Medicinal plants with anti-inflammatory activities. Nat Prod Res 30(12):1343–1352

    Article  PubMed  CAS  Google Scholar 

  • Manglani PR, Arif MA (2006) Multidrug therapy in leprosy. J Indian Med Assoc 104(12):686–688

    PubMed  CAS  Google Scholar 

  • Matei D, Fang F, Shen C et al (2012) Epigenetic resensitization to platinum in ovarian cancer. Cancer Res 72:2197–2205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed AA, Ali SI, El-Baz FK et al (2014) Chemical composition of essential oil and antimicrobial activities of crude extracts of Commiphora myrrha resin. Ind Crops Prod 57:10–16

    Article  CAS  Google Scholar 

  • Mohan Maruga Raja KK, Mishra SH (2010) Comprehensive review of Clerodendrum phlomidis: a traditionally used bitter. J Chin Integr Med 8(6):510–524

    Article  CAS  Google Scholar 

  • Mokhtari RB, Homayouni TS, Baluch N et al (2017) Combination therapy in combating cancer. Oncotarget. https://doi.org/10.18632/oncotarget.16723

    Article  PubMed Central  Google Scholar 

  • Morris T, Stables M, Hobbs A et al (2009) Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol 183(3):2089–2096

    Article  PubMed  CAS  Google Scholar 

  • Mutabingwa TK (2005) Atremisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy. Acta Trop 95(3):305–315

    Article  PubMed  CAS  Google Scholar 

  • Nambi P, Aiyar N (2003) G protein-coupled receptors in drug discovery. Assay Drug Dev Technol 1(2):305–310

    Article  PubMed  CAS  Google Scholar 

  • Neubauer A (2017) Immunotherapy of cancer with checkpoint inhibitors: not only in malignant melanoma. Der Internist 58(4):409–423

    Article  PubMed  CAS  Google Scholar 

  • Pan R, Dai Y, Gao X et al (2009) Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis. Int Immunopharmacol 9:859–869

    Article  PubMed  CAS  Google Scholar 

  • Pappová L, Jošová M, Kazimierová I, Sutovska M, Franova S (2016) Combination therapy with budesonide and salmeterol in experimental allergy inflammation. In: Pulmonary infection and inflammation. Springer Publishing, pp 25–34

  • Pareek A, Suthar M, Rathore GS et al (2011) Feverfew (Tanacetum parthenium L.): a systematic review. Pharmacog Rev 5(9):103–110

    Article  Google Scholar 

  • Penugonda K, Lindshield BL (2013) Fatty acid and phytosterol content of commercial saw palmetto supplements. Nutrients 5(9):3617–3633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Public Assessment Report (2014) Scientific Discussion. TRINOMIA 100/20/2.5 mg hard capsules TRINOMIA 100/20/5 mg hard capsules TRINOMIA 100/20/10 mg hard capsules (acetylsalicylic acid, atorvastatin calcium trihydrate and Ramipril). Registration number in Spain: 74980. EU-procedure number: ES/H/0241/001-003/DC, ES/H/0241/001/E/001-003

  • Quinn BA, Dash R, Sarkar S et al (2015) Pancreatic cancer combination therapy using a BH3 mimetic and a synthetic tetracycline. Cancer Res 75:2305–2315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramadan G, Al-Kahtani MA, El-Sayed WM (2014) Anti-inflammatory and antioxidant properties of Curcuma longa (Tumeric) versus Zingiber officinale (Ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation 34(4):291–301

    Article  CAS  Google Scholar 

  • Richter M, Winkel AF, Schummer D et al (2014) Pau d-arco activates Nrf2-dependent gene expression via the MEK/ERK-pathway. J Toxicol Sci 2:353–361

    Article  Google Scholar 

  • Ruhaak LR, Felth J, Karlsson PC et al (2011) Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa. Biol Pharm Bull 34:774–778

    Article  PubMed  CAS  Google Scholar 

  • Saklani A, Hegde B, Mishra P et al (2012) NF-κB dependent anti-inflammatory activity of chlorojanerin isolated from Saussurea heteromalla. Phytomedicine 19:988–997

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Cerella C, Reuter S et al (2011) Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway. Genes Nutr 6(2):149–160

    Article  PubMed  Google Scholar 

  • Spiller F, Alves MK, Vieira SM et al (2008) Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation. J Pharm Pharmacol 60(4):473–478

    Article  PubMed  CAS  Google Scholar 

  • Strauss J, Figg WD (2016) Using epigenetic therapy to overcome chemotherapy resistance. Anticancer Res 36(1):1–4

    PubMed  CAS  PubMed Central  Google Scholar 

  • Su S, Duan J, Chen T et al (2015) Frankincense and myrrh suppress inflammation via regulation of the metabolic profiling and the MAPK signalling pathway. Sci Rep 5:13668

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultan KS, Berkowitz JC, Khan S (2017) Combination therapy for inflammatory bowel disease. World J Gastrointest Pharmacol Ther 8(2):103–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Süntar I, Akkol EK, Baykal T (2010) Assessment of anti-inflammatory and antiociceptive activities of Olea europaea L. J Med Food 13(2):352–356

    Article  PubMed  Google Scholar 

  • Terra X, Montagut G, Bustos M et al (2009) Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20(3):210–218

    Article  PubMed  CAS  Google Scholar 

  • Tugwell P, Pincus T, Yocum D et al (1995) Combination therapy with cyclosporine and methotrexate in severe rheumatoid arthritis. N Engl J Med 333(3):137–141

    Article  PubMed  CAS  Google Scholar 

  • Turner CE, Elshohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43(2):169–234

    Article  PubMed  CAS  Google Scholar 

  • US Department of Health and Human Services, Food and Drug Administration (2013) Guidance for Industry. Codevelopment of two or more new investigational drugs for use in combination. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation?Guidances?default.htm. Accessed 19 April 2018

  • Van Voorhis WC, Adams JH, Adelfio R et al (2016) Open source drug discovery with the malaria box compound collection for neglected diseases and beyond. PLoS Pathog 12(7):e1005763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Wyk B, Wink M (2004) Medicinal Plants of the World. Timber Press, Portland, pp 329–430

    Google Scholar 

  • Van Wyk BE, van Oudtshoorn B, Gericke N (2009) Medicinal plants of South Africa, 2nd edn. Briza Publications, Pretoria, pp 162–163

    Google Scholar 

  • Watts CR, Rousseau B (2012) Slippery elm, its biochemistry, and use as a complementary and alternative treatment for laryngeal irritation. J Investig Biochem 1(1):17–23

    Article  Google Scholar 

  • Weight SS, Purcell EM, Wilcox C et al (1953) Antibiotic combinations and resistance to antibiotics. Development of resistance during repeated subcultures of Staphylococci and certain Streptococci on media containing penicillin, streptomycin, erythromycin, terramycin, and chloramphenicol used singly and in pairs. J Lab Clin Med 42(6):877–895

    Google Scholar 

  • World Health Organisation (2018a) Leprosy. http://www.who.int/mediacentre/factsheets/fs101/en/. Accessed 11 Jan 2018

  • World Health Organisation (2018b) Overview of malaria treatment. http://www.who.int/mediacentre/factsheets/fs101/en/. Accessed 14 Jan 2018

  • Worthington RJ, Melander C (2013) Overcoming resistance to β-lactam antibiotics. J Org Chem 78:4207–4213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie YC, Dong XW, Wu XM et al (2009) Inhibitory effect of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice. Int Immunopharmacol 9(2):194–200

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Xiao B, Ma X et al (2009) Effects of Gaultheria yunnanensis on adjuvant arthritis in rats. China J Chin Mat Med 34:2516–2519

    Google Scholar 

  • Yang MH, Ali Z, Khan IA et al (2014) Anti-inflammatory activity of constituents isolated from Terminalia chebula. Nat Prod Commun 9(7):965–968

    PubMed  CAS  Google Scholar 

  • Ye Y, Chen F, Sun H et al (2008) Stemucronatoside K, a novel C21 steroidal glycoside from Stephanotis mucronata, inhibited the cellular and humoral immune response in mice. Int Immunopharmacol 8:1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Liu R, Sun L et al (2011) Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder. Molecules 16:3875–3884

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Edwin Cock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cock, I.E. Is the pharmaceutical industry’s preoccupation with the monotherapy drug model stifling the development of effective new drug therapies?. Inflammopharmacol 26, 861–879 (2018). https://doi.org/10.1007/s10787-018-0488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0488-7

Keywords

Navigation