Advertisement

Inflammopharmacology

, Volume 26, Issue 3, pp 861–879 | Cite as

Is the pharmaceutical industry’s preoccupation with the monotherapy drug model stifling the development of effective new drug therapies?

  • Ian Edwin Cock
Commentary
  • 76 Downloads

Abstract

Drug discovery and development is heavily biased towards the development of monotherapies. Screening, testing, and evaluation of mono-entity drugs are generally much simpler than drug combinations, and are generally easier to get approval from the regulatory authorities for their clinical use. However, monotherapy drugs may not have optimal activity, may have associated toxicities, or may lose activity over time as their target develops resistance. Drug combinations, often developed from existing monotherapies, may have improved efficacy and/or be less toxic. Furthermore, the existing drugs which have lost efficacy due to the development of resistance can often be re-activated by combining them with other chemical entities. Thus, whilst the current climate for drug approval, registration, and clinical use drives the majority of drug development research towards the development of monotherapies, combinations are often a substantial improvement on the original drug. This commentary examines monotherapy and combinational therapy models and discusses the benefits and limitations of each model.

Keywords

Combinational therapies Synergy Drug repurposing Complementary therapies Natural products Drug repurposing Traditional medicine 

References

  1. Adams BM, Banks HT, Kwon HD et al (2005) Dynamic multidrug therapies for HIV: optimal and STI control approaches. J Comput Appl Math 184(1):10–49CrossRefGoogle Scholar
  2. Adel SPR, Prakash J (2010) Chemical composition and antioxidant properties of ginger root (Zingiber officinale). J Med Plant Res 4(24):2674–2679CrossRefGoogle Scholar
  3. Ahmed A, Azim A, Gurjar M et al (2014) Current concepts in combination antibiotic therapy for critically ill patients. Indian J Crit Care Med 18:310–314CrossRefPubMedPubMedCentralGoogle Scholar
  4. Airaksinen S, Karajalainen M, Kivikero N et al (2005) Excipient selection can significantly affect solid-state phase transformation in formulation during wet granulation. AAPS Pharmscitech 6:E311–E322CrossRefPubMedPubMedCentralGoogle Scholar
  5. Akihisa T, Takahashi A, Kikuchi T et al (2011) The melanogenesis-inhibitory, anti-inflammatory, and chemopreventative effects of liminoids in n-hexane extract of Azadirachta indica A. Juss. (Neem) seeds. J Oleo Sci 60:53–59CrossRefPubMedGoogle Scholar
  6. Akram M, Uddin S, Ahmed A et al (2010) Curcuma longa and curcumin: a review article. R J Biol Plant Biol 55(2):65–70Google Scholar
  7. Arrowsmith J (2011) Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov 10(2):87CrossRefPubMedGoogle Scholar
  8. Babu NP, Pandikumar P, Ignacimuthu S (2011) Lysosomal membrane stabilisation and anti-inflammatory activity of Clerodendrum phlomidis L.f., a traditional medicinal plant. J Ethnopharmacol 135(3):779–785CrossRefPubMedGoogle Scholar
  9. Banno N, Akihisa T, Yasukawa K et al (2006) Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. J Ethnopharmacol 107(2):249–253CrossRefPubMedGoogle Scholar
  10. Biggs I, Sirdaarta J, White A et al (2016a) GC-MS analysis of frankincense extracts which inhibit the growth of bacterial triggers of selected autoimmune diseases. Pharmacogn Commun 6(1):10–22.  https://doi.org/10.5530/pc.2016.1.3 CrossRefGoogle Scholar
  11. Biggs I, Sirdaarta J, White A et al (2016b) GC–MS analysis of Commiphora molmol oleo-resin extracts which inhibit the growth of bacterial triggers of selected autoimmune diseases. Pharmacogn J 8(3):191–202.  https://doi.org/10.5530/pj.2016.3.4 CrossRefGoogle Scholar
  12. Biswas K, Chattopadhyay I, Banerjee RK et al (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 11:1336–1345Google Scholar
  13. Byeon SE, Chung JY, Lee YG et al (2008) In vitro and in vivo anti-inflammatory effects of taheebo, a water extract from the inner bark of Tabebuia avellanedae. J Ethnopharmacol 119:145–152CrossRefPubMedGoogle Scholar
  14. Capasso A (2013) Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules 18:690–700CrossRefPubMedGoogle Scholar
  15. Carey AN, Fisher DR, Joseph JA et al (2013) The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. Nutr Neurosci 16(1):13–20CrossRefPubMedGoogle Scholar
  16. Cheesman MJ, Ilanko A, Blonk B et al (2017) Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 11(22):57–72.  https://doi.org/10.4103/phrev.phrev_21_17 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cock IE (2014) The early stages of rheumatoid arthritis: new targets for the development of combinational drug therapies. OA Arthritis 2(1):5Google Scholar
  18. Cock IE (2015a) The genus Aloe: phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. In: Rainsford KD et al (eds) Novel natural products: therapeutic effects in pain, arthritis and gastro-intestinal diseases, progress in drug research 70. Springer, Basel, pp 179–235CrossRefGoogle Scholar
  19. Cock IE (2015b) The safe usage of herbal medicines: counter-indications, cross-reactivity and toxicity. Pharmacogn Commun 5(1):2–50.  https://doi.org/10.5530/pc.2015.1.2 CrossRefGoogle Scholar
  20. Cock IE (2015c) The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacology 23(5):203–229.  https://doi.org/10.1007/s10787-015-0246-z CrossRefPubMedGoogle Scholar
  21. Dale J, Alcorn N, Capell H et al (2007) Combination therapy for rheumatoid arthritis: methotrexate and sulfasalazine together or with other DMARDs. Nat Clin Pract Rheumatol 3(8):450–458CrossRefPubMedGoogle Scholar
  22. El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 11(1):632–638CrossRefGoogle Scholar
  23. Feltonstein MW, Schühly W, Warnick JE et al (2004) Anti-inflammatory and anti-hyperalgesic effects of sesquiterpine lactones from Magnolia and Bear’s foot. Pharmacol Biochem Behav 79(2):299–302CrossRefGoogle Scholar
  24. Franklin SJ, Dickinson SE, Karlage KL et al (2014) Stability of sulforaphane for topical formulation. Drug Dev Ind Pharm 40(4):494–502CrossRefPubMedGoogle Scholar
  25. Fu Y, Zhou H, Wang S et al (2014) Glycyrol suppresses collagen-induced arthritis by regulating autoimmune and inflammatory responses. PLoS One 9:e98137CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gayathri B, Manjula N, Vinaykumar KS et al (2007) Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO and MAP kinases. Int Immunopharmacol 7(4):473–482CrossRefPubMedGoogle Scholar
  27. Ginsburg H, Deharo E (2011) A call for using natural compounds in the development of new antimalarial treatments - an introduction. Malaria J 10(Suppl 1).  https://doi.org/10.1186/1475-2875-10-S1-SW1
  28. Grzanna R, Lindmark L, Frondoza CG (2005) Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food 8(2):125–132CrossRefPubMedGoogle Scholar
  29. Gyurkovska V, Alipieva K, Maciul A et al (2011) Anti-inflammatory activity of Devil’s claw in vitro systems and their active constituents. Food Chem 125(1):171–178CrossRefGoogle Scholar
  30. Hernández-Ortega M, Ortiz-Moreno A, Hernández-Navarro MD, et al (2012) Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.) J Biomed Biotechnol (Article ID 524019)Google Scholar
  31. Hodge G, Hodge S, Han P (2002) Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry 48:209–215CrossRefPubMedGoogle Scholar
  32. Jang MH, Lim S, Han SM et al (2003) Harpagophytum procumbens suppresses lipopolysaccharide-stimulated expressions of cyclooxygenase-2 and inducible nitric oxide synthase in fibroblast cell line L929. J Pharmacol Sci 93:367–371CrossRefPubMedGoogle Scholar
  33. Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14(2):141–153PubMedGoogle Scholar
  34. Khdair A, Chen D, Patil Y et al (2010) Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release 141:137–144CrossRefPubMedGoogle Scholar
  35. Kim JH, Kim SJ (2014) Overexpression of microRNA-25 by withaferin A induces cyclooxygenase-2 expression in rabbit articular chondrocytes. J Pharmacol Sci 125:83–90CrossRefPubMedGoogle Scholar
  36. Kim SJ, Sancheti SA, Sancheti SS et al (2010) Effect of 1,2,3,4,6-penta-O-galloyl-beta-d-glucose on elastase and hyaluronidase activities and its type II collagen expression. Acta Pol Pharm 67:145–150PubMedGoogle Scholar
  37. Lafeber M, Spiering W, van der Graaf Y et al (2013) The combined use of aspirin, a statin, and blood pressure-lowering agents (polypill components) and the risk of vascular morbidity and mortality in patients with coronary artery disease. Am Heart J 166(2):282–289CrossRefPubMedGoogle Scholar
  38. Lebaratoux P, Sirdaarta J, Rayan P et al (2016) An evaluation of the antibacterial, anti-Giardial, anticancer and toxicity properties of selected nut extracts. Pharmacogn Commun 6(3):174–184.  https://doi.org/10.5530/pc.2016.3.7 CrossRefGoogle Scholar
  39. Li XY, Zong SL, Chen FY et al (2012) Three novel immunosuppressive steroidal glycosides from the stems of Stephanotis mucronata. Nat Prod Commun 7(10):1269–1270PubMedGoogle Scholar
  40. Li XJ, Yang YJ, Li YS et al (2016) α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J Ethnopharmacol 179(17):22–26CrossRefPubMedGoogle Scholar
  41. Liu Z, Zhong JY, Gao EN et al (2014) Effects of glycyrrhizin and licorice flavonoids on LPS-induced cytokines expression in macrophages. China J Chin Mater Med 39(19):3841–3845Google Scholar
  42. Maione F, Russo R, Khan H et al (2016) Medicinal plants with anti-inflammatory activities. Nat Prod Res 30(12):1343–1352CrossRefPubMedGoogle Scholar
  43. Manglani PR, Arif MA (2006) Multidrug therapy in leprosy. J Indian Med Assoc 104(12):686–688PubMedGoogle Scholar
  44. Matei D, Fang F, Shen C et al (2012) Epigenetic resensitization to platinum in ovarian cancer. Cancer Res 72:2197–2205CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mohamed AA, Ali SI, El-Baz FK et al (2014) Chemical composition of essential oil and antimicrobial activities of crude extracts of Commiphora myrrha resin. Ind Crops Prod 57:10–16CrossRefGoogle Scholar
  46. Mohan Maruga Raja KK, Mishra SH (2010) Comprehensive review of Clerodendrum phlomidis: a traditionally used bitter. J Chin Integr Med 8(6):510–524CrossRefGoogle Scholar
  47. Mokhtari RB, Homayouni TS, Baluch N et al (2017) Combination therapy in combating cancer. Oncotarget.  https://doi.org/10.18632/oncotarget.16723 PubMedCentralCrossRefGoogle Scholar
  48. Morris T, Stables M, Hobbs A et al (2009) Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol 183(3):2089–2096CrossRefPubMedGoogle Scholar
  49. Mutabingwa TK (2005) Atremisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy. Acta Trop 95(3):305–315CrossRefPubMedGoogle Scholar
  50. Nambi P, Aiyar N (2003) G protein-coupled receptors in drug discovery. Assay Drug Dev Technol 1(2):305–310CrossRefPubMedGoogle Scholar
  51. Neubauer A (2017) Immunotherapy of cancer with checkpoint inhibitors: not only in malignant melanoma. Der Internist 58(4):409–423CrossRefPubMedGoogle Scholar
  52. Pan R, Dai Y, Gao X et al (2009) Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis. Int Immunopharmacol 9:859–869CrossRefPubMedGoogle Scholar
  53. Pappová L, Jošová M, Kazimierová I, Sutovska M, Franova S (2016) Combination therapy with budesonide and salmeterol in experimental allergy inflammation. In: Pulmonary infection and inflammation. Springer Publishing, pp 25–34Google Scholar
  54. Pareek A, Suthar M, Rathore GS et al (2011) Feverfew (Tanacetum parthenium L.): a systematic review. Pharmacog Rev 5(9):103–110CrossRefGoogle Scholar
  55. Penugonda K, Lindshield BL (2013) Fatty acid and phytosterol content of commercial saw palmetto supplements. Nutrients 5(9):3617–3633CrossRefPubMedPubMedCentralGoogle Scholar
  56. Public Assessment Report (2014) Scientific Discussion. TRINOMIA 100/20/2.5 mg hard capsules TRINOMIA 100/20/5 mg hard capsules TRINOMIA 100/20/10 mg hard capsules (acetylsalicylic acid, atorvastatin calcium trihydrate and Ramipril). Registration number in Spain: 74980. EU-procedure number: ES/H/0241/001-003/DC, ES/H/0241/001/E/001-003Google Scholar
  57. Quinn BA, Dash R, Sarkar S et al (2015) Pancreatic cancer combination therapy using a BH3 mimetic and a synthetic tetracycline. Cancer Res 75:2305–2315CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ramadan G, Al-Kahtani MA, El-Sayed WM (2014) Anti-inflammatory and antioxidant properties of Curcuma longa (Tumeric) versus Zingiber officinale (Ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation 34(4):291–301CrossRefGoogle Scholar
  59. Richter M, Winkel AF, Schummer D et al (2014) Pau d-arco activates Nrf2-dependent gene expression via the MEK/ERK-pathway. J Toxicol Sci 2:353–361CrossRefGoogle Scholar
  60. Ruhaak LR, Felth J, Karlsson PC et al (2011) Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa. Biol Pharm Bull 34:774–778CrossRefPubMedPubMedCentralGoogle Scholar
  61. Saklani A, Hegde B, Mishra P et al (2012) NF-κB dependent anti-inflammatory activity of chlorojanerin isolated from Saussurea heteromalla. Phytomedicine 19:988–997CrossRefPubMedGoogle Scholar
  62. Schumacher M, Cerella C, Reuter S et al (2011) Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway. Genes Nutr 6(2):149–160CrossRefPubMedGoogle Scholar
  63. Spiller F, Alves MK, Vieira SM et al (2008) Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation. J Pharm Pharmacol 60(4):473–478CrossRefPubMedGoogle Scholar
  64. Strauss J, Figg WD (2016) Using epigenetic therapy to overcome chemotherapy resistance. Anticancer Res 36(1):1–4PubMedGoogle Scholar
  65. Su S, Duan J, Chen T et al (2015) Frankincense and myrrh suppress inflammation via regulation of the metabolic profiling and the MAPK signalling pathway. Sci Rep 5:13668CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sultan KS, Berkowitz JC, Khan S (2017) Combination therapy for inflammatory bowel disease. World J Gastrointest Pharmacol Ther 8(2):103–113CrossRefPubMedPubMedCentralGoogle Scholar
  67. Süntar I, Akkol EK, Baykal T (2010) Assessment of anti-inflammatory and antiociceptive activities of Olea europaea L. J Med Food 13(2):352–356CrossRefPubMedGoogle Scholar
  68. Terra X, Montagut G, Bustos M et al (2009) Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20(3):210–218CrossRefPubMedGoogle Scholar
  69. Tugwell P, Pincus T, Yocum D et al (1995) Combination therapy with cyclosporine and methotrexate in severe rheumatoid arthritis. N Engl J Med 333(3):137–141CrossRefPubMedGoogle Scholar
  70. Turner CE, Elshohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43(2):169–234CrossRefPubMedGoogle Scholar
  71. US Department of Health and Human Services, Food and Drug Administration (2013) Guidance for Industry. Codevelopment of two or more new investigational drugs for use in combination. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation?Guidances?default.htm. Accessed 19 April 2018
  72. Van Voorhis WC, Adams JH, Adelfio R et al (2016) Open source drug discovery with the malaria box compound collection for neglected diseases and beyond. PLoS Pathog 12(7):e1005763CrossRefPubMedPubMedCentralGoogle Scholar
  73. Van Wyk B, Wink M (2004) Medicinal Plants of the World. Timber Press, Portland, pp 329–430Google Scholar
  74. Van Wyk BE, van Oudtshoorn B, Gericke N (2009) Medicinal plants of South Africa, 2nd edn. Briza Publications, Pretoria, pp 162–163Google Scholar
  75. Watts CR, Rousseau B (2012) Slippery elm, its biochemistry, and use as a complementary and alternative treatment for laryngeal irritation. J Investig Biochem 1(1):17–23CrossRefGoogle Scholar
  76. Weight SS, Purcell EM, Wilcox C et al (1953) Antibiotic combinations and resistance to antibiotics. Development of resistance during repeated subcultures of Staphylococci and certain Streptococci on media containing penicillin, streptomycin, erythromycin, terramycin, and chloramphenicol used singly and in pairs. J Lab Clin Med 42(6):877–895Google Scholar
  77. World Health Organisation (2018a) Leprosy. http://www.who.int/mediacentre/factsheets/fs101/en/. Accessed 11 Jan 2018
  78. World Health Organisation (2018b) Overview of malaria treatment. http://www.who.int/mediacentre/factsheets/fs101/en/. Accessed 14 Jan 2018
  79. Worthington RJ, Melander C (2013) Overcoming resistance to β-lactam antibiotics. J Org Chem 78:4207–4213CrossRefPubMedPubMedCentralGoogle Scholar
  80. Xie YC, Dong XW, Wu XM et al (2009) Inhibitory effect of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice. Int Immunopharmacol 9(2):194–200CrossRefPubMedGoogle Scholar
  81. Xiong Y, Xiao B, Ma X et al (2009) Effects of Gaultheria yunnanensis on adjuvant arthritis in rats. China J Chin Mat Med 34:2516–2519Google Scholar
  82. Yang MH, Ali Z, Khan IA et al (2014) Anti-inflammatory activity of constituents isolated from Terminalia chebula. Nat Prod Commun 9(7):965–968PubMedGoogle Scholar
  83. Ye Y, Chen F, Sun H et al (2008) Stemucronatoside K, a novel C21 steroidal glycoside from Stephanotis mucronata, inhibited the cellular and humoral immune response in mice. Int Immunopharmacol 8:1231–1238CrossRefPubMedGoogle Scholar
  84. Zhang D, Liu R, Sun L et al (2011) Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder. Molecules 16:3875–3884CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Environmental Futures Research InstituteNathan Campus, Griffith UniversityNathanAustralia
  2. 2.School of Environment and ScienceNathan Campus, Griffith UniversityNathanAustralia

Personalised recommendations