Skip to main content

Advertisement

Log in

Curcumin–galactomannoside complex inhibits pathogenesis in Ox-LDL-challenged human peripheral blood mononuclear cells

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Oxidised low-density lipoprotein (ox-LDL) is a pro-atherogenic molecule, which induces inflammatory response and contributes to the pathogenesis of vascular dysfunction to atherosclerosis. The aim of the present study was to explore the anti-inflammatory effect of a novel bioavailable formulation of curcumin as ‘curcumagalactomannosides’ (CGM) against ox-LDL-induced inflammatory responses in human peripheral blood mononuclear cells (hPBMCs). Curcumagalactomannosides was made from natural curcumin using the soluble dietary fibre (galactomannans) derived from fenugreek seeds (Trigonella foenumgracum) and the hPBMCs were isolated from healthy human volunteers. The cells were cultured in collagen-coated plates at 37 °C and grouped as Group I (Control), Group II (ox-LDL treated) and Group III (ox-LDL + CGM treated). Further analysis of inflammatory markers, reactive oxygen species and mRNA expression levels indicated significantly increased expressions of iNOS, TNF-α, IL-6 and VCAM-1 in ox-LDL-treated group along with the nuclear translocation of NF-κB. Other inflammatory markers such as LOX, PGE2, total COX and lipid peroxidation level were also found to be significantly (p < 0.05) increased upon ox-LDL treatment. The treatment with CGM on the other hand was found to down-regulate and reverse the ox-LDL-induced alterations indicating its potential anti-inflammatory effect on hPBMCs via. NF-κB signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Axelrod B, Cheesebrough TM, Laakso B (1981) Lipoxygenase from soybeans methods in enzymology, vol 71. Academic Press, Cambridge, pp 441–453

    Google Scholar 

  • Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22

    Article  CAS  Google Scholar 

  • Balsano C, Alisi A (2009) Antioxidant effects of natural bioactive compounds. Curr Pharm Des 15:3063–3073

    Article  CAS  Google Scholar 

  • Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 20:707–727

    Article  CAS  Google Scholar 

  • Campbell MS, Berrones AD, Krishnakumar IM, Richard JC, Philip MW, Bradley SF (2017) Responsiveness to curcumin intervention is associated with reduced aortic stiffness in young, obese men with higher initial stiffness. J Funct Foods 29:154–160

    Article  CAS  Google Scholar 

  • Carr AC, McCall MR, Frei B (2000) Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 20:1716–1723

    Article  CAS  Google Scholar 

  • Chen C, Khismatullin DB (2013) Synergistic effect of histamine and TNF-alpha on monocyte adhesion to vascular endothelial cells. Inflammation 36:309–319

    Article  CAS  Google Scholar 

  • Chen Q, Fisher DT, Clancy KA, Gauguet JM, Wang WC, Unger E, Rose-John S, von Andrian UH, Baumann H, Evans SS (2006) Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 7:1299–1308

    Article  CAS  Google Scholar 

  • Chen XP, Xun KL, Wu Q, Zhang TT, Shi JS, Du GH (2007) Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoproteininduced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species. Vascul Pharmacol 47:1–9

    Article  CAS  Google Scholar 

  • Cominacini L, Garbin U, FrattaPasini A, Paulon T, Davoli A, Campagnola M, Marchi E, Pastorino AM, Gaviraghi G, Lo Cascio V (1997) Antioxidants inhibit the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized ldl on human umbilical vein endothelial cells. Free Radic Biol Med 22:117–127

    Article  CAS  Google Scholar 

  • Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494

    Article  CAS  Google Scholar 

  • Davidson JF, Whyte B, Bissinger PH, Schiest RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5116–5121

    Article  CAS  Google Scholar 

  • Fan Z, Yao J, Li Y, Hu X, Shao H, Tian X (2015) Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-κB. Int J Clin Exp Pathol 8:3451–3459

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  Google Scholar 

  • Gleim S, Stitham J, Tang WH, Martin KA, Hwa J (2012) An eicosanoid-centric view of atherothrombotic risk factors. Cell Mol Life Sci 69:3361–3380

    Article  CAS  Google Scholar 

  • Havel RJ, Eder HA, Bragdon JH (1995) The distribution and chemical composition of ultracentrifugally separated lipoprotein in human serum. J Clun Invest 34:1345–1353

    Article  Google Scholar 

  • Hsieh CC, Yen MH, Yen CH, Lau YT (2001) Oxidized low density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovasc Res 49:135–145

    Article  CAS  Google Scholar 

  • Huang Hua, Koelle Pirkko, Fendler Markus, Schroettle Angelika, Czihal Michael, Hoffmann Ulrich, Kuhlencordt Peter Jan (2014) Niacin reverses migratory macrophage foam cell arrest mediated by oxLDL in vitro. PLoS One 9:e114643

    Article  CAS  Google Scholar 

  • Iademarco MF, McQuillan JJ, Rosen GD, Dean DC (1992) Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 267:16323–16329

    PubMed  CAS  Google Scholar 

  • Joe B, Lokesh BR (1994) Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1224:255–263

    Article  CAS  Google Scholar 

  • Jovinge S, Ares MP, Kallin B, Nilsson J (1996) Human monocytes/macrophages release TNF-alpha in response to Ox-LDL. Arterioscler Thromb Vasc Biol 16:1573–1579

    Article  CAS  Google Scholar 

  • Kahn A, Jing N, Li JH, Watanabe S, Mu W, Lan HY, Nakagawa T, Ohashi R, Johnson RJ (2004) Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am J Nephrol 24:387–392

    Article  CAS  Google Scholar 

  • Khaled H, Bassem J, Serge C, Samir B, Abdelfattah E (2010) Inhibitory effect of fenugreek galactomannan on digestive enzymes related to diabetes, hyperlipidemia, and liver–kidney dysfunctions. Biotechnol Bioprocess Eng 15:407–413

    Article  CAS  Google Scholar 

  • Krishnakumar IM, Abilash R, Dinesh K, Ramadasan K, Balu M (2012) An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J Funct Foods 4:348–357

    Article  CAS  Google Scholar 

  • Laird MH, Rhee SH, Perkins DJ, Medvedev AE, Piao W, Fenton MJ, Vogel SN (2009) Tlr4/myd88/pi3k interactions regulate tlr4 signaling. J Leukoc Biol 85:966–977

    Article  CAS  Google Scholar 

  • Lee WJ, Ou HC, Hsu WC, Chou MM, Tseng JJ, Hsu SL, Tsai KL, Sheu WH (2010) Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J Vasc Surg 52:1290–1300

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkioja T, Yla-Herttuala S (1988) Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol 18:157–167

    Article  Google Scholar 

  • Maziere C, Auclair M, Djavaheri-Mergny M, Packer L, Maziere JC (1996) Oxidized low density lipoprotein induces activation of the transcription factor NF kappa B in fibroblasts, endothelial and smooth muscle cells. Biochem Mol Biol Int 39:1201–1207

    PubMed  CAS  Google Scholar 

  • Monaco C, Paleolog E (2004) Nuclear factor kB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res 61:671–682

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T (1992) Functional analysis of the human vascular cell adhesion molecule 1 promoter. J Exp Med 176:1583–1593

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Palanisamy GS, Kirk NM, Ackart DF, Obregon-Henao A, Shanley CA, Orme IM, Basaraba RJ (2012) Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs. PLoS One 7:e34148

    Article  CAS  Google Scholar 

  • Pardo GL, Paim BA, Castilho RF, Velho JA, Delgado R, Vercesi AE, Oliveira HC (2008) Mangiferaindica L. extract (Vimanag) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis prone hypercholesterolemic mouse. Pharmacol Res 57:332–338

    Article  CAS  Google Scholar 

  • Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, De Clercq E (1988) Rapid and automated tetrazoliumbased colorimetric assay for the detection of anti-HIV compounds. J Virol Methods 20:309–321

    Article  CAS  Google Scholar 

  • Pawlak K, Mysliwiec M, Pawlak D (2012) Oxidized LDL to autoantibodies against oxLDL ratio-the new biomarker associated with carotid atherosclerosis and cardiovascular complications in dialyzed patients. Atherosclerosis 224:252–257

    Article  CAS  Google Scholar 

  • Pirillo A, Norata GD, Catapano AL (2013) LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013:152786

    Article  CAS  Google Scholar 

  • Ponnuswamy P, Ostermeier E, Schrottle A, Chen J, Huang PL et al (2009) Oxidative stress and compartment of gene expression determine proatherosclerotic effects of inducible nitric oxide synthase. Am J Pathol 174:2400–2410

    Article  CAS  Google Scholar 

  • Radhika A, Jacob SS, Sudhakaran PR (2007) Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Mol Cell Biochem 305:133–143

    Article  CAS  Google Scholar 

  • Radmark O, Samuelsson B (2007) 5-lipoxygenase: regulation and possible involvement in atherosclerosis. Prostaglandins Other Lipid Mediat 83:162–174

    Article  CAS  Google Scholar 

  • Ratheesh M, Svenia JP, Asha S, Sandhya S, Grishkumar B, Krishnakumar IM (2017) Anti-inflammatory effect of a novel formulation of coconut inflorescence sap against ox-LDL induced inflammatory responses in human peripheral blood mononuclear cells by modulating TLR-NF-κB signaling pathway. Toxicol Mech Methods 27:615–621

    Article  CAS  Google Scholar 

  • Santangelo C, Var R, Scazzocchio BD, Benedetto R, Filesi C, Masella R (2007) Polyphenols, intracellular signalling and inflammation. Ann Ist Super Sanita 43:394–405

    PubMed  CAS  Google Scholar 

  • Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    Article  CAS  Google Scholar 

  • Sharma JN, Al-Omran Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252–259

    Article  CAS  Google Scholar 

  • Shimizu T, Kondo K, Hayaishi O (1981) Role of prostaglandin endoperoxides in the serum thiobarbituric acid reaction. Arch Biochem Biophys 206:271–276

    Article  CAS  Google Scholar 

  • Slavin JL, Lloyd B (2012) Health benefits of fruits and vegetables. Adv Nutr 3:506–516

    Article  CAS  Google Scholar 

  • Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966

    Article  CAS  Google Scholar 

  • Subash CG, Sridevi P, Wonil K, Bharat BA (2012) Discovery of curcumin, a component of the golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39:283–299

    Article  CAS  Google Scholar 

  • Tsao PS, Buitrago R, Chan JR, Cooke JP (1996) Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM-1. Circulation 94:1682–1689

    Article  CAS  Google Scholar 

  • Wang W, Deng M, Liu X, Ai W, Tang Q, Hu J (2011) Tlr4 activation induces nontolerant inflammatory response in endothelial cells. Inflammation 34:509–518

    Article  CAS  Google Scholar 

  • Wung BS, Hsu MC, Wu CC, Hsieh CW (2005) Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation. Life Sci 78:389–397

    Article  CAS  Google Scholar 

  • Xiaoling C, Sun Jian, Li Hailun, Wang Hongwu, Yongtao Lin YuHu, Zheng Donghui (2017) Curcumin loaded nanoparticles protect against rhabdomyolysis-induced acute kidney injury. Cell Physiol Biochem 43:2143–2154

    Article  CAS  Google Scholar 

  • Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212

    Article  CAS  Google Scholar 

  • Yang H, Mohamed AS, Zhou SH (2012) Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis 11:1–9

    Article  CAS  Google Scholar 

  • Zhao F, Gong Y, Hu Y, Lu M, Wang J, Dong J, Chen D, Chen L, Fu F, qui F (2015) Curcumin and its major metabolites inhibit the inflammatory response induced by lipopolysaccharide: translocation of nuclear factor-κB as potential target. Mol Med Rep 11:3087–3093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by M/s Akay Flavours & Aromatics Pvt Ltd, Cochin, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ratheesh.

Ethics declarations

Conflict of interest

Authors disclose the conflict of interest. CGM is the patented curcumin formulation of M/s Akay Flavours & Aromatics Pvt Ltd, Cochin, India, trademarked as CurQfen®.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saji, S., Asha, S., Svenia, P.J. et al. Curcumin–galactomannoside complex inhibits pathogenesis in Ox-LDL-challenged human peripheral blood mononuclear cells. Inflammopharmacol 26, 1273–1282 (2018). https://doi.org/10.1007/s10787-018-0474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0474-0

Keywords

Navigation