, Volume 26, Issue 3, pp 725–735 | Cite as

Influence of corticosteroid therapy on IL-18 and nitric oxide production during Behçet’s disease

  • Fatmazohra Djaballah-Ider
  • Zineb Djeraba
  • Mourad Chemli
  • Nadjiba Dammene-Debbihe
  • Doulkifly Lounis
  • Houda Belguendouz
  • Yanis Medour
  • Samia Chaib
  • Chafia Touil-Boukoffa
Original Article


Background and aims

Behçet’s disease (BD) is a chronic multisystemic inflammatory disease with complex etiopathogenesis. Th1-proinflammatory cytokines seem to be involved in its pathogenesis. Our current study aims to evaluate interleukin-18 (IL-18) and nitric oxide (NO) involvement in the development of different clinical manifestations of BD as well as to investigate the corticosteroid therapy effect on this production in Algerian patients.


For this purpose, we evaluated in vivo and ex vivo IL-18, interferon-γ (IFN-γ) levels using ELISA and NO production by the Griess’ method in naïve-active and corticosteroid-treated BD patients with different clinical manifestations. Additionally, we assessed CD40/CD40L expression by flow cytometrics assay in these groups of patients.

Results and discussion

Our results indicate that IL-18 and nitrite levels were higher in naïve-active BD patients. Interestingly, this high production differed according to the clinical manifestations and was associated with an increased risk of mucocutaneous and vascular involvement. Concerning corticosteroid treated-active BD patients, no difference was observed in this production between each clinical subgroup. However, IFN-γ levels increased in all categories of active patients. Interestingly, corticosteroid therapy reduced significantly these inflammatory mediators regardless of the clinical manifestations studied. In addition, the CD40/CD40L expression differed according to the clinical presentations.


Collectively, our results suggest that concomitant high production of IL-18 and NO in naïve-active BD patients is related to an increased risk of mucocutaneous lesions and vascular involvement. Moreover, the relationship between these two inflammatory markers could constitute a predictable tool of BD clinical presentations and an early factor of therapy efficiency.


Behçet Interleukin-18 Interferon-γ NO Corticosteroid therapy 



The authors thank the patients and the controls. They also express their gratitude to the Department of Immunology and to the staff of the Department of Internal Medicine of Dr Md Seghir NEKKACHE Hospital in Algiers.


This work was supported by grants from National Agency for Research and Development (ATRSS, ex ANDRS), project code number 43-ANDRS-2011 Algeria.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no conflicts of interest with regard to the research, authorship, and/or publication of this article.

Ethical approval

This manuscript was approved by all co-authors. The local ethics committee “Algerian National Agency for Research in Health Sciences, ATRSS ex-ANDRS” in compliance with Helsinki declaration has approved our study (Code number 43-ANDRS-2011).


  1. Acikgoz N (2016) The neutrophil-lymphocyte ratio and Behcet disease. Angiology 67:297. CrossRefPubMedGoogle Scholar
  2. Akkurt ZM, Bozkurt M, Uçmak D, Yüksel H, Uçak H, Sula B, Gürsel Özkurt Z, Yildiz M, Akdeniz D, Arica M (2015) Serum cytokine levels in Behçet’s disease. J Clin Lab Anal 29:317–320. CrossRefPubMedGoogle Scholar
  3. Aktas Cetin E, Cosan F, Cefle A, Deniz G (2014) IL-22-secreting Th22 and IFN-γ-secreting Th17 cells in Behçet’s disease. Mod Rheumatol 24:802–807. CrossRefPubMedGoogle Scholar
  4. Arroul-Lammali A, Djeraba Z, Belkhelfa M, Belguendouz H, Hartani D, Lahlou-Boukoffa OS, Touil-Boukoffa C (2012) Early involvement of nitric oxide in mechanisms of pathogenesis of experimental autoimmune uveitis induced by interphotoreceptor retinoid-binding protein (IRBP). J Fr Ophtalmol 35:251–259. CrossRefPubMedGoogle Scholar
  5. Belguendouz H, Messaoudene D, Hartani D, Chachoua L, Ahmedi ML, Lahmar-Belguendouz K, Lahlou-Boukoffa O, Touil-Boukoffa C (2008) Effect of corticotherapy on interleukin-8 and -12 and nitric oxide production during Behçet and idiopathic uveitis. J Fr Ophtalmol 31:387–395CrossRefPubMedGoogle Scholar
  6. Belguendouz H, Messaoudène D, Lahmar K, Ahmedi L, Medjeber O, Hartani D, Lahlou-Boukoffa O, Touil-Boukoffa C (2011) Interferon-γ and nitric oxide production during Behçet uveitis: immunomodulatory effect of interleukin-10. J Interferon Cytokine Res 31:643–651. CrossRefPubMedGoogle Scholar
  7. Belguendouz H, Messaoudene D, Lahmar-Belguendouz K, Djeraba Z, Otmani F, Terahi M, Tiar M, Hartani D, Lahlou-Boukoffa OS, Touil-Boukoffa C (2015) In vivo and in vitro IL-18 production during uveitis associated with Behçet disease: effect of glucocorticoid therapy. J Fr Ophtalmol 38:206–212. CrossRefPubMedGoogle Scholar
  8. Ben Ahmed M, Houman H, Miled M, Dellagi K, Louzir H (2004) Involvement of chemokines and Th1 cytokines in the pathogenesis of mucocutaneous lesions of Behçet’s disease. Arthritis Rheum 50:2291–2295. CrossRefPubMedGoogle Scholar
  9. Chen F, Hou S, Jiang Z, Chen Y, Kijlstra A, Rosenbaum JT, Yang P (2012) CD40 gene polymorphisms confer risk of Behcet’s disease but not of Vogt-Koyanagi-Harada syndrome in a Han Chinese population. Rheumatol Oxf Engl 51:47–51. CrossRefGoogle Scholar
  10. Criteria for diagnosis of Behçet’s disease. International Study Group for Behçet’s Disease (1990) Lancet. Lond Engl 335:1078–1080Google Scholar
  11. Davatchi F, Shahram F, Chams-Davatchi C, Shams H, Nadji A, Akhlaghi M, Faezi T, Ghodsi Z, Faridar A, Ashofteh F, Sadeghi Abdollahi B (2010) Behcet’s disease: from East to West. Clin Rheumatol 29:823–833. CrossRefPubMedGoogle Scholar
  12. Davatchi F, Chams-Davatchi C, Shams H, Shahram F, Nadji A, Akhlaghi M, Faezi T, Ghodsi Z, Sadeghi Abdollahi B, Ashofteh F, Mohtasham N, Kavosi H, Masoumi M (2017) Behcet’s disease: epidemiology, clinical manifestations, and diagnosis. Expert Rev Clin Immunol 13:57–65. CrossRefPubMedGoogle Scholar
  13. Di Mauro D, Bitto L, D’Andrea L, Favaloro A, Giacobbe O, Magaudda L, Rizzo G, Trimarchi F (2006) Behaviour of nitric oxide synthase isoforms in inflammatory human joint diseases: an immunohistochemical study. Ital J Anat Embryol 111:111–123PubMedGoogle Scholar
  14. Direskeneli H (2006) Autoimmunity vs autoinflammation in Behcet’s disease: do we oversimplify a complex disorder? Rheumatol Oxf Engl 45:1461–1465. CrossRefGoogle Scholar
  15. Djaballah-Ider F, Chaib S, Belguendouz H, Talbi D, Touil-Boukoffa C (2012) T cells activation and interferon-γ/nitric oxide production during Behçet disease: a study in Algerian patients. Ocul Immunol Inflamm 20:215–217. CrossRefPubMedGoogle Scholar
  16. Djeraba Z, Arroul-Lammali A, Medjeber O, Belguendouz H, Hartani D, Lahlou-Boukoffa O-S, Touil-Boukoffa C (2010) Nitric oxide, biomarker of experimental autoimmune uveitis induced by S antigen. J Fr Ophtalmol 33:693–700. CrossRefPubMedGoogle Scholar
  17. Djeraba Z, Boumedine K, Arroul-Lammali A et al (2014) Ex vivo immunomodulatory effect of all- trans-retinoic acid during Behçet’s disease: a study in Algerian patients. Immunopharmacol Immunotoxicol 36(1):78–86. CrossRefPubMedGoogle Scholar
  18. Esatoglu SN, Kutlubay Z, Ucar D, Hatemi I, Uygunoglu U, Siva A, Hatemi G (2017) Behçet’s syndrome: providing integrated care. J Multidiscip Healthc 10:309–319. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Evereklioglu C, Turkoz Y, Er H, Inaloz HS, Ozbek E, Cekmen M (2002) Increased nitric oxide production in patients with Behçet’s disease: is it a new activity marker? J Am Acad Dermatol 46:50–54CrossRefPubMedGoogle Scholar
  20. Gracie JA, Robertson SE, McInnes IB (2003) Interleukin-18. J Leukoc Biol 73:213–224CrossRefPubMedGoogle Scholar
  21. Hamzaoui K (2011) Th17 cells in Behçet’s disease: a new immunoregulatory axis. Clin Exp Rheumatol 29:S71–S76PubMedGoogle Scholar
  22. Hamzaoui K, Hamzaoui A, Guemira F et al (2002) Cytokine profile in Behçet’s disease patients. Relationship with disease activity. Scand J Rheumatol 31(4):205–210CrossRefPubMedGoogle Scholar
  23. Hamzaoui A, Ghraïri H, Ammar J, Zekri S, Guemira F, Hamzaoui K (2003) IL-18 mRNA expression and IFN-gamma induction in bronchoalveolar lavage from Behçet’s disease. Clin Exp Rheumatol 21:S8–14PubMedGoogle Scholar
  24. Hamzaoui A, Houman MH, Massouadia M, Ben Salem T, Khanfir MS, Ben Ghorbel I, Miled M (2012) Contribution of Hla-B51 in the susceptibility and specific clinical features of Behcet’s disease in Tunisian patients. Eur J Intern Med 23:347–349. CrossRefPubMedGoogle Scholar
  25. Horie Y, Meguro A, Ohta T, Lee EB, Namba K, Mizuuchi K, Iwata D, Mizuki N, Ota M, Inoko H, Ishida S, Ohno S, Kitaichi N (2017) HLA-B51 carriers are susceptible to ocular symptoms of behçet disease and the association between the two becomes stronger towards the East along the silk road: a literature survey. Ocul Immunol Inflamm 25:37–40. CrossRefPubMedGoogle Scholar
  26. İnal EE, Rüstemoğlu A, İnanır A, Ekinci D, Gül Ü, Yiğit S, Ateş Ö (2015) Associations of rs4810485 and rs1883832 polymorphisms of CD40 gene with susceptibility and clinical findings of Behçet’s disease. Rheumatol Int 35:837–843. CrossRefPubMedGoogle Scholar
  27. İşcan Y, Yiğit U, Tuğcu BÇ, Erdoğan M, Erdoğan DA, Öner V, Taş M, Özyazgan Y (2012) Tear nitric oxide levels in Behçet’s disease. Med Kaunas Lith 48:559–562Google Scholar
  28. Kapsimali VD, Kanakis MA, Vaiopoulos GA et al (2010) Etiopathogenesis of Behçet’s disease with emphasis on the role of immunological aberrations. Clin Rheumatol 29(11):1211–1216. CrossRefPubMedGoogle Scholar
  29. Li B, Yang P, Zhou H, Zhang Z, Xie C, Lin X, Huang X, Kijlstra A (2003) T-bet expression is up regulated in active Behçet’s disease. Br J Ophthalmol 87:1264–1267CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lopalco G, Lucherini OM, Vitale A, Talarico R, Lopalco A, Galeazzi M, Lapadula G, Cantarini L, Iannone F (2015) Putative role of serum amyloid-A and proinflammatory cytokines as biomarkers for Behcet’s disease. Medicine (Baltimore) 94:e1858. CrossRefGoogle Scholar
  31. Lopalco G, Lucherini OM, Lopalco A, Venerito V, Fabiani C, Frediani B, Galeazzi M, Lapadula G, Cantarini L, Iannone F (2017) Cytokine signatures in mucocutaneous and ocular Behçet’s disease. Front Immunol. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Musabak U, Pay S, Erdem H, Simsek I, Pekel A, Dinc A, Sengul A (2006) Serum interleukin-18 levels in patients with Behçet’s disease. Is its expression associated with disease activity or clinical presentations? Rheumatol Int 26:545–550. CrossRefPubMedGoogle Scholar
  33. Nair JR, Moots RJ (2017) Behcet’s disease. Clin Med Lond Engl 17:71–77. CrossRefGoogle Scholar
  34. Nakanishi K, Yoshimoto T, Tsutsui H et al (2001) Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 19:423–474. CrossRefPubMedGoogle Scholar
  35. Nara K, Kurokawa MS, Chiba S, Yoshikawa H, Tsukikawa S, Matsuda T, Suzuki N (2008) Involvement of innate immunity in the pathogenesis of intestinal Behçet’s disease. Clin Exp Immunol 152:245–251. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Neves FS, Spiller F (2013) Possible mechanisms of neutrophil activation in Behçet’s disease. Int Immunopharmacol 17:1206–1210. CrossRefPubMedGoogle Scholar
  37. Neves FS, Carrasco S, Goldenstein-Schainberg C, Gonçalves CR, de Mello SBV (2009) Neutrophil hyperchemotaxis in Behçet’s disease: a possible role for monocytes orchestrating bacterial-induced innate immune responses. Clin Rheumatol 28:1403–1410. CrossRefPubMedGoogle Scholar
  38. Niles JC, Wishnok JS, Tannenbaum SR (2006) Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide Biol Chem 14:109–121. CrossRefGoogle Scholar
  39. Palestine AG, Kolfenbach JR, Ozzello DJ (2016) Rheumatologists and ophthalmologists differ in treatment decisions for ocular Behçet disease. J Clin Rheumatol Pract Rep Rheum Musculoskelet Dis 22:316–319. CrossRefGoogle Scholar
  40. Rico D, Vaquerizas JM, Dopazo H et al (2007) Identification of conserved domains in the promoter regions of nitric oxide synthase 2: implications for the species-specific transcription and evolutionary differences. BMC Genomics 8:271. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sancak B, Onder M, Oztas MO, Bukan N, Gürer MA (2003) Nitric oxide levels in Behçet’s disease. J Eur Acad Dermatol Venereol JEADV 17:7–9CrossRefPubMedGoogle Scholar
  42. Schoenberger SP, Toes RE, van der Voort EI et al (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393(6684):480–483. CrossRefPubMedGoogle Scholar
  43. Shimizu J, Takai K, Fujiwara N, Arimitsu N, Ueda Y, Wakisaka S, Yoshikawa H, Kaneko F, Suzuki T, Suzuki N (2012) Excessive CD4+ T cells co-expressing interleukin-17 and interferon-γ in patients with Behçet’s disease. Clin Exp Immunol 168:68–74. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Takeuchi M, Karasawa Y, Harimoto K, Tanaka A, Shibata M, Sato T, Caspi RR, Ito M (2017) Analysis of Th Cell-related cytokine production in Behçet disease patients with uveitis before and after infliximab treatment. Ocul Immunol Inflamm 25:52–61. CrossRefPubMedGoogle Scholar
  45. Tanaka H, Yang G-X, Iwakoshi N, Knechtle SJ, Kawata K, Tsuneyama K, Leung P, Coppel RL, Ansari AA, Joh T, Bowlus C, Gershwin ME (2013) Anti-CD40 ligand monoclonal antibody delays the progression of murine autoimmune cholangitis. Clin Exp Immunol 174:364–371. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Taysi S, Sari RA, Dursun H, Yilmaz A, Keles M, Cayir K, Akyuz M, Uyanik A, Guvenc A (2008) Evaluation of nitric oxide synthase activity, nitric oxide, and homocysteine levels in patients with active Behcet’s disease. Clin Rheumatol 27:1529–1534. CrossRefPubMedGoogle Scholar
  47. Touil-Boukoffa C, Bauvois B, Sancéau J, Hamrioui B, Wietzerbin J (1998) Production of nitric oxide (NO) in human hydatidosis: relationship between nitrite production and interferon-gamma levels. Biochimie 80:739–744CrossRefPubMedGoogle Scholar
  48. Tridetti J, Benoit A, Borgoens P et al (2016) Cardiovascular involvements in Behçet’s disease: “ANGIO-BEHÇET”. Rev Med Liege 71(1):22–27PubMedGoogle Scholar
  49. Trottier MD, Newsted MM, King LE, Fraker PJ (2008) Natural glucocorticoids induce expansion of all developmental stages of murine bone marrow granulocytes without inhibiting function. Proc Natl Acad Sci USA 105:2028–2033. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang H, Yang P-Z, Peng X-Y, Zhao M, Zhou H-Y, Huang X-K (2017) An increased expression of CD40/CD40L costimulatory molecules in erythema nodosum of patients with Behçet’s disease. Int J Ophthalmol 2:12–15Google Scholar
  51. Xue L, Zhu X-H, Yang X-F, Bao X-C, Gao X-Q, Qiu Y-H, Wu Z, Ji X-P, Li H-W (2015) Effect of pioglitazone combined with simvastatin on the CD40-CD40 ligand system in rabbits with atherosclerosis. Eur Rev Med Pharmacol Sci 19:322–327PubMedGoogle Scholar
  52. Yamamura M, Kawashima M, Taniai M, Yamauchi H, Tanimoto T, Kurimoto M, Morita Y, Ohmoto Y, Makino H (2001) Interferon-gamma-inducing activity of interleukin-18 in the joint with rheumatoid arthritis. Arthritis Rheum 44:275–285.<275::AID-ANR44>3.0.CO;2-BGoogle Scholar
  53. Zeidan MJ, Saadoun D, Garrido M, Klatzmann D, Six A, Cacoub P (2016) Behçet’s disease physiopathology: a contemporary review. Auto-Immun Highlights 7:4. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang S-H, Zhang F-X (2017) Behcet’s disease with recurrent thoracic aortic aneurysm combined with femoral artery aneurysm: a case report and literature review. J Cardiothorac Surg. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhou ZY, Chen SL, Shen N et al (2012) Cytokines and Behcet’s disease. Autoimmun Rev 11(10):699–704. CrossRefPubMedGoogle Scholar
  56. Ziesche E, Bachmann M, Kleinert H, Pfeilschifter J, Mühl H (2007) The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J Biol Chem 282:16006–16015. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fatmazohra Djaballah-Ider
    • 1
  • Zineb Djeraba
    • 1
  • Mourad Chemli
    • 2
  • Nadjiba Dammene-Debbihe
    • 2
  • Doulkifly Lounis
    • 2
  • Houda Belguendouz
    • 1
  • Yanis Medour
    • 3
  • Samia Chaib
    • 3
  • Chafia Touil-Boukoffa
    • 1
  1. 1.Universite des Sciences et de la Technologie Houari BoumedieneAlgiersAlgeria
  2. 2.Service de Medecine Interne, Hopital Dr Md Seghir NEKKACHEAlgiersAlgeria
  3. 3.Service d’Immunologie, Hopital Dr Md Seghir NEKKACHEAlgiersAlgeria

Personalised recommendations