Skip to main content

Advertisement

Log in

Oxidative stress as a possible mechanism of statin-induced myopathy

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Statins, inhibitors of hydroxy methyl glutaryl coenzyme-A (HMG-CoA) reductase, are the most widely used drugs for treating hypercholesterolemia. However, statins can cause disabling myopathy as their main adverse effect. Several molecular mechanisms underlie the statin-induced myopathy including the decrease in the levels of essential mevalonate and cholesterol derivatives. This review discusses a further mechanism involving the loss of other anti-oxidant defenses besides ubiquinone (Co-Q) in skeletal muscles which produce a significant amount of reactive oxygen species (ROS). Therefore, to maintain their function, skeletal muscles need a high level of anti-oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data was obtained from “TiGER: A database for tissue-specific gene expression and regulation” for homosapiens

Similar content being viewed by others

References

  • Ahmadi Y, Ghorbanihaghjo A, Argani H (2017) The balance between induction and inhibition of mevalonate pathway regulates cancer suppression by statins: a review of molecular mechanisms. Chemico Biol Interact 273:273–285

    Article  CAS  Google Scholar 

  • Ames BN (1989) Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res Commun 7:121–128

    Article  PubMed  CAS  Google Scholar 

  • Anto RJ, Kuttan G, Babu K, Rajasekharan K, Kuttan R (1998) Anti-inflammatory activity of natural and synthetic curcuminoids. Pharm Pharmacol Commun 4:103–106

    CAS  Google Scholar 

  • Barja G (1999) Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenergy Biomembr 31:347–366

    Article  CAS  Google Scholar 

  • Basraon SK, Menon R, Makhlouf M, Longo M, Hankins GD, Saade GR, Costantine MM (2012) Can statins reduce the inflammatory response associated with preterm birth in an animal model? Am J Obstet Gynecol 207:224.e221–224.e227

    Article  CAS  Google Scholar 

  • Bełtowski J (2008) Liver X receptors (LXR) as therapeutic targets in dyslipidemia. Cardiovasc Ther 26:297–316

    Article  PubMed  CAS  Google Scholar 

  • Bloor W (1936) The cholesterol content of muscle. J Biol Chem 114:639–648

    CAS  Google Scholar 

  • Bonetti P, Lerman LO, Napoli C, Lerman A (2003) Statin effects beyond lipid lowering—are they clinically relevant? Eur Heart J 24:225–248

    Article  PubMed  CAS  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown AJ (2007) Cholesterol, statins and cancer. Clin Exp Pharmacol Physiol 34:135–141

    Article  PubMed  CAS  Google Scholar 

  • Cabreiro F, Picot CR, Friguet B, Petropoulos I (2006) Methionine sulfoxide reductases. Ann N Y Acad Sci 1067:37–44

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    Article  PubMed  CAS  Google Scholar 

  • Cafforio P, Dammacco F, Gernone A, Silvestris F (2005) Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis 26:883–891

    Article  PubMed  CAS  Google Scholar 

  • Caso G, Kelly P, McNurlan MA, Lawson WE (2007) Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. Am J Cardiol 99:1409–1412

    Article  PubMed  CAS  Google Scholar 

  • Cauley JA et al (2006) Statin use and breast cancer: prospective results from the Women’s Health Initiative. J Natl Cancer Inst 98:700–707

    Article  PubMed  CAS  Google Scholar 

  • Cerda A, Hirata MH, Hirata RDC (2012) Molecular mechanisms underlying statin effects on genes involved in the reverse cholesterol transport. Drug Metab Personal Ther 27:101–111

    CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  PubMed  CAS  Google Scholar 

  • Cuchel M, Rader DJ (2006) Macrophage reverse cholesterol transport key to the regression of atherosclerosis? Circulation 113:2548–2555

    Article  PubMed  Google Scholar 

  • Das U (1999) Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins Leukotrienes Essent Fatty Acids (PLEFA) 61:157–163

    Article  CAS  Google Scholar 

  • De Pinieux G et al (1996) Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol 42:333–337

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM, Gamel WG (1971) Cholesterol synthesis in the intestine of man: regional differences and control mechanisms. J Clin Investig 50:872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dietschy JM, Siperstein MD (1967) Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J Lipid Res 8:97–104

    PubMed  CAS  Google Scholar 

  • Dietschy JM, Wilson JD (1968) Cholesterol synthesis in the squirrel monkey: relative rates of synthesis in various tissues and mechanisms of control. J Clin Investig 47:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dirks AJ, Jones KM (2006) Statin-induced apoptosis and skeletal myopathy. Am J Physiol Cell Physiol 291:C1208–C1212

    Article  PubMed  CAS  Google Scholar 

  • Dulak J et al (2005) Atorvastatin affects several angiogenic mediators in human endothelial cells. Endothelium 12:233–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duncan RE, El-Sohemy A, Archer MC (2005) Statins and cancer development. Cancer Epidemiol Biomark Prev 14:1897–1898

    Article  CAS  Google Scholar 

  • Erdös B, Snipes JA, Tulbert CD, Katakam P, Miller AW, Busija DW (2006) Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD (P) H oxidase-dependent superoxide production. Am J Physiol Heart Circ Physiol 290:H1264–H1270

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  PubMed  CAS  Google Scholar 

  • Farmer JA (2013) The effect of statins on skeletal muscle function: the STOMP trial. Curr Atheroscler Rep 15:1–3

    Article  Google Scholar 

  • Farwell WR, Scranton RE, Lawler EV, Lew RA, Brophy MT, Fiore LD, Gaziano JM (2008) The association between statins and cancer incidence in a veterans population. J Natl Cancer Inst 100:134–139

    Article  PubMed  CAS  Google Scholar 

  • Fernandez G, Spatz ES, Jablecki C, Phillips PS (2011) Statin myopathy: a common dilemma not reflected in clinical trials. Clevel Clin J Med 78:393

    Article  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  • Germershausen JI, Hunt VM, Bostedor RG, Bailey PJ, Karkas JD, Alberts AW (1989) Tissue selectivity of the cholesterol-lowering agents lovastatin, simvastatin and pravastatin in rats in vivo. Biochem Biophys Res Commun 158:667–675

    Article  PubMed  CAS  Google Scholar 

  • Guijarro C et al (1998) 3-Hydroxy-3-methylglutaryl coenzyme a reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res 83:490–500

    Article  PubMed  CAS  Google Scholar 

  • Guijarro C, Blanco-Colio LM, Massy ZA, O’Donnell MP, Kasiske BL, Keane WF, Egido J (1999) Lipophilic statins induce apoptosis of human vascular smooth muscle cells. Kidney Int 56:S88–S91

    Article  Google Scholar 

  • Hot A, Lavocat F, Lenief V, Miossec P (2012) Simvastatin inhibits the pro-inflammatory and pro-thrombotic effects of IL-17 and TNF-α on endothelial cells. Ann Rheumatic Dis. https://doi.org/10.1136/annrheumdis-2012-201887

    Article  Google Scholar 

  • Hu J, Zhang Z, Shen W-J, Azhar S (2010) Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab 7:47

    Article  CAS  Google Scholar 

  • Igel M, Sudhop T, Bergmann K (2002) Pharmacology of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), including rosuvastatin and pitavastatin. J Clin Pharmacol 42:835–845

    Article  PubMed  CAS  Google Scholar 

  • Inoue I et al (2000) Lipophilic HMG-CoA reductase inhibitor has an anti-inflammatory effect: reduction of mRNA levels for interleukin-1β, interleukin-6, cyclooxygenase-2, and p22phox by regulation of peroxisome proliferator-activated receptor α (PPARα) in primary endothelial cells. Life Sci 67:863–876

    Article  PubMed  CAS  Google Scholar 

  • Jadhav S, Nimbalkar S, Kulkarni A, Madhavi D (1995) Lipid oxidation in biological and food systems. Food science and technology. Marcel Dekker, New York. pp 5–64

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  PubMed  CAS  Google Scholar 

  • Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4:977–987

    Article  PubMed  CAS  Google Scholar 

  • Jasiñska M, Owczarek J, Orszulak-Michalak D (2007) Statins: a new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol Rep 59:483

    PubMed  Google Scholar 

  • Jeske DJ, Dietschy JM (1980) Regulation of rates of cholesterol synthesis in vivo in the liver and carcass of the rat measured using [3H] water. J Lipid Res 21:364–376

    PubMed  CAS  Google Scholar 

  • Johnson TE, Zhang X, Bleicher KB, Dysart G, Loughlin AF, Schaefer WH, Umbenhauer DR (2004) Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone. Toxicol Appl Pharmacol 200:237–250

    Article  PubMed  CAS  Google Scholar 

  • Kagan V, Serbinova E, Packer L (1990) Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem Biophys Res Commun 169:851–857

    Article  PubMed  CAS  Google Scholar 

  • Kalra S (2009) The role of Coenzyme Q10 in statin-associated myopathy. Electron Physician 1:2–8

    Google Scholar 

  • Kamikawa T, Kobayashi A, Yamashita T, Hayashi H, Yamazaki N (1985) Effects of coenzyme Q10 on exercise tolerance in chronic stable angina pectoris. Am J Cardiol 56:247–251

    Article  PubMed  CAS  Google Scholar 

  • Karp I, Behlouli H, LeLorier J, Pilote L (2008) Statins and cancer risk. Am J Med 121:302–309

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann P, Török M, Zahno A, Waldhauser K, Brecht K, Krähenbühl S (2006a) Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci 63:2415–2425

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann P, Török M, Zahno A, Waldhauser K, Brecht K, Krähenbühl S (2006b) Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci CMLS 63:2415–2425

    Article  PubMed  CAS  Google Scholar 

  • Kim MC et al (2011) Comparison of clinical outcomes of hydrophilic and lipophilic statins in patients with acute myocardial infarction. Korean J Intern Med 26:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci 107:15565–15570

    Article  PubMed  PubMed Central  Google Scholar 

  • Laaksonen R, Ojala J-P, Tikkanen MJ, Himberg J-J (1994) Serum ubiquinone concentrations after short-and long-term treatment with HMG-CoA reductase inhibitors. Eur J Clin Pharmacol 46:313–317

    Article  PubMed  CAS  Google Scholar 

  • Laaksonen R, Jokelainen K, Sahi T, Tikkanen MJ, Himberg JJ (1995) Decreases in serum ubiquinone concentrations do not result in reduced levels in muscle tissue during short-term simvastatin treatment in humans. Clin Pharmacol Ther 57:62–66

    Article  PubMed  CAS  Google Scholar 

  • Laaksonen R, Jokelainen K, Laakso J, Sahi T, Härkönen M, Tikkanen MJ, Himberg J-J (1996) The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am J Cardiol 77:851–854

    Article  PubMed  CAS  Google Scholar 

  • Laaksonen R et al (2006) A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle. PLoS One 1:e97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamperti C et al (2005) Muscle coenzyme Q10 level in statin-related myopathy. Arch Neurol 62:1709–1712

    Article  PubMed  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  PubMed  CAS  Google Scholar 

  • Leonarduzzi G, Sottero B, Poli G (2002) Oxidized products of cholesterol: dietary and metabolic origin, and proatherosclerotic effects (review). J Nutr Biochem 13:700–710

    Article  PubMed  CAS  Google Scholar 

  • Littarru GP, Langsjoen P (2007) Coenzyme Q10 and statins: biochemical and clinical implications. Mitochondrion 7:S168–S174

    Article  PubMed  CAS  Google Scholar 

  • Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37:31–37

    Article  PubMed  CAS  Google Scholar 

  • Littarru GP, Tiano L (2010) Clinical aspects of coenzyme Q 10: an update. Nutrition 26:250–254

    Article  PubMed  CAS  Google Scholar 

  • Löw P, Andersson M, Edlund C, Dallner G (1992) Effects of mevinolin treatment on tissue dolichol and ubiquinone levels in the rat. Biochim Biophys Acta (BBA) Lipids Lipid Metab 1165:102–109

    Article  Google Scholar 

  • Lowther WT, Weissbach H, Etienne F, Brot N, Matthews BW (2002) The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat Struct Mol Biol 9:348

    CAS  Google Scholar 

  • Marcoff L, Thompson PD (2007) The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol 49:2231–2237

    Article  PubMed  CAS  Google Scholar 

  • Maron DJ, Fazio S, Linton MF (2000) Current perspectives on statins. Circulation 101:207–213

    Article  PubMed  CAS  Google Scholar 

  • McTaggart F (2003) Comparative pharmacology of rosuvastatin. Atheroscler Suppl 4:9–14

    Article  PubMed  CAS  Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. In: Aggarwal BB, Surh Y-J, Shishodia S (eds) The molecular targets and therapeutic uses of curcumin in health and disease. Springer, Berlin. pp 105–125

    Chapter  Google Scholar 

  • Mortensen S, Leth A, Agner E, Rohde M (1997) Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol Asp Med 18:137–144

    Article  Google Scholar 

  • Nam N-H (2006) Naturally occurring NF-κB inhibitors. Mini Rev Med Chem 6:945–951

    Article  PubMed  CAS  Google Scholar 

  • Nelson KK, Melendez JA (2004) Serial review: the powerhouse takes control of the cell: the role of mitochondria in signal transduction. Free Radic Biol Med 37:768–784

    Article  PubMed  CAS  Google Scholar 

  • Ortego M, Bustos C, Hernández-Presa MA, Tuñón J, Dı́az C, Hernández G, Egido J (1999) Atorvastatin reduces NF-κB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis 147:253–261

    Article  PubMed  CAS  Google Scholar 

  • Owczarek J, Jasiñska M, Orszulak-Michalak D (2005) Drug-induced myopathies. An overview of the possible mechanisms. Pharmacol Rep 57:23–34

    PubMed  CAS  Google Scholar 

  • Ozbek E, Cekmen M, Ilbey YO, Simsek A, Polat EC, Somay A (2009) Atorvastatin prevents gentamicin-induced renal damage in rats through the inhibition of p38-MAPK and NF-kB pathways. Ren Fail 31:382–392

    Article  PubMed  CAS  Google Scholar 

  • Päivä H et al (2005) High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther 78:60–68

    Article  PubMed  CAS  Google Scholar 

  • Panahi Y, Rahimnia AR, Sharafi M, Alishiri G, Saburi A, Sahebkar A (2014) Curcuminoid treatment for knee osteoarthritis: a randomized double-blind placebo-controlled trial. Phytother Res 28:1625–1631

    Article  PubMed  CAS  Google Scholar 

  • Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A (2016) Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. J Cell Physiol 233:141–152

    Article  CAS  Google Scholar 

  • Park S-Y et al (2014) Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal? Am J Physiol Heart Circ Physiol 307:H346–H352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC (1997) Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev 11:463–475

    Article  PubMed  CAS  Google Scholar 

  • Porter C, Wall BT (2012) Skeletal muscle mitochondrial function: is it quality or quantity that makes the difference in insulin resistance? J Physiol 590:5935–5936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poston L, Raijmakers M (2004) Trophoblast oxidative stress, antioxidants and pregnancy outcome—a review. Placenta 25:S72–S78

    Article  PubMed  CAS  Google Scholar 

  • Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508

    Article  PubMed  CAS  Google Scholar 

  • Riley P (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  PubMed  CAS  Google Scholar 

  • Rosenson RS (2004) Current overview of statin-induced myopathy. Am J Med 116:408–416

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T et al (2007) Usefulness of hydrophilic vs lipophilic statins after acute myocardial infarction. Circ J 71:1348–1353

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Valle V, Chavez-Tapia NC, Uribe M, Méndez-Sánchez N (2012) Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 19:4850–4860

    Article  PubMed  Google Scholar 

  • Satoh K, Yamato A, Nakai T, Hoshi K, Ichihara K (1995) Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on mitochondrial respiration in ischaemic dog hearts. Br J Pharmacol 116:1894–1898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaars CF, Stalenhoef AF (2008) Effects of ubiquinone (coenzyme Q10) on myopathy in statin users. Curr Opin Lipidol 19:553–557

    Article  PubMed  CAS  Google Scholar 

  • Schirris TJ et al (2015) Statin-induced myopathy is associated with mitochondrial complex III inhibition. Cell Metab 22:399–407

    Article  PubMed  CAS  Google Scholar 

  • Shin SK, Ha TY, McGregor RA, Choi MS (2011) Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res 55:1829–1840

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava S, Pucadyil TJ, Paila YD, Ganguly S, Chattopadhyay A (2010) Chronic cholesterol depletion using statin impairs the function and dynamics of human serotonin1A receptors. Biochemistry 49:5426–5435

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  PubMed  CAS  Google Scholar 

  • Sinzinger H (2000) Does vitamin E beneficially affect muscle pains during HMG-Co-enzyme-A-reductase inhibitors without CK-elevation? Atherosclerosis 149:225

    Article  PubMed  CAS  Google Scholar 

  • Sinzinger H, Wolfram R, Peskar BA (2002) Muscular side effects of statins. J Cardiovasc Pharmacol 40:163–171

    Article  PubMed  CAS  Google Scholar 

  • Sironi L et al (2006) Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment. Neurobiol Dis 22:445–451

    Article  PubMed  CAS  Google Scholar 

  • Sirtori CR (2014) The pharmacology of statins. Pharmacol Res 88:3–11

    Article  PubMed  CAS  Google Scholar 

  • Sirvent P, Mercier J, Lacampagne A (2008) New insights into mechanisms of statin-associated myotoxicity. Curr Opin Pharmacol 8:333–338

    Article  PubMed  CAS  Google Scholar 

  • Skilving I, Acimovic J, Rane A, Ovesjö ML, Björkhem-Bergman L (2015) Statin-induced myopathy and ubiquinone levels in serum-results from a prospective, observational study. Basic Clin Pharmacol Toxicol 117:133–136

    Article  PubMed  CAS  Google Scholar 

  • Skripova D, Daniel P, Katarina K, Rafael R (2010) Is there is need for ubiquinone (CoQ10) supplementation in statin-associated myopathy? Open Nutraceuticals J 3:242–247

    Article  CAS  Google Scholar 

  • Smith LL (1981) Cholesterol autoxidation. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Smith LL (1987) Cholesterol autoxidation 1981–1986. Chem Phys Lipid 44:87–125

    Article  CAS  Google Scholar 

  • Smith LL (1991) Another cholesterol hypothesis: cholesterol as antioxidant. Free Radic Biol Med 11:47–61

    Article  PubMed  CAS  Google Scholar 

  • Solomon KR, Freeman MR (2008) Do the cholesterol-lowering properties of statins affect cancer risk? Trends Endocrinol Metab 19:113–121

    Article  PubMed  CAS  Google Scholar 

  • Stancu C, Sima A (2001) Statins: mechanism of action and effects. J Cell Mol Med 5:378–387

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama S, Kitazawa M, Ozawa T, Suzuki K, Izawa Y (1980) Anti-oxidative effect of coenzyme Q 10. Cell Mol Life Sci 36:1002–1003

    Article  CAS  Google Scholar 

  • Taylor ML, Wells BJ, Smolak MJ (2008) Statins and cancer: a meta-analysis of case–control studies. Eur J Cancer Prev 17:259–268

    Article  PubMed  Google Scholar 

  • Thompson PD, Clarkson P, Karas RH (2003) Statin-associated myopathy. JAMA 289:1681–1690

    Article  PubMed  CAS  Google Scholar 

  • Tomaszewski M, Stępień KM, Tomaszewska J, Czuczwar SJ (2011) Statin-induced myopathies. Pharmacol Rep 63:859–866

    Article  PubMed  CAS  Google Scholar 

  • Usui H et al (2003) HMG-CoA reductase inhibitor ameliorates diabetic nephropathy by its pleiotropic effects in rats. Nephrol Dial Transplant 18:265–272

    Article  PubMed  CAS  Google Scholar 

  • Vaklavas C, Chatzizisis YS, Ziakas A, Zamboulis C, Giannoglou GD (2009) Molecular basis of statin-associated myopathy. Atherosclerosis 202:18–28

    Article  PubMed  CAS  Google Scholar 

  • Vaziri ND, Dicus M, Ho ND, Boroujerdi-Rad L, Sindhu RK (2003) Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int 63:179–185

    Article  PubMed  CAS  Google Scholar 

  • Wahane V, Kumar V (2010) Atorvastatin ameliorates inflammatory hyperalgesia in rat model of monoarticular arthritis. Pharmacol Res 61:329–333

    Article  PubMed  CAS  Google Scholar 

  • Wassmann S et al (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300–305

    Article  PubMed  CAS  Google Scholar 

  • Willis RA, Folkers K, Tucker JL, Ye C-Q, Xia L-J, Tamagawa H (1990) Lovastatin decreases coenzyme Q levels in rats. Proc Natl Acad Sci 87:8928–8930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wood WG, Mΰller WE, Eckert GP (2014) Statins and neuroprotection: basic pharmacology needed. Mol Neurobiol 50:214–220

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Shiojima I, Ikeda H, Komuro I (2009) Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol 47:698–705

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zafarullah M, Li W, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci CMLS 60:6–20

    Article  PubMed  CAS  Google Scholar 

  • 三浦進司, 渡辺順一, 佐藤満昭, 富田多嘉子, 大澤俊彦, 原征彦, 富田勲 (1995) Effects of various natural antioxidants on the Cu2+ -mediated oxidative modification of low density lipoprotein. Biol Pharm Bull 18:1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasin Ahmadi or Amir Ghorbanihaghjo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, Y., Ghorbanihaghjo, A., Naghi-Zadeh, M. et al. Oxidative stress as a possible mechanism of statin-induced myopathy. Inflammopharmacol 26, 667–674 (2018). https://doi.org/10.1007/s10787-018-0469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0469-x

Keywords

Navigation