Inflammopharmacology

, Volume 26, Issue 3, pp 839–849 | Cite as

Potential usefulness of methyl gallate in the treatment of experimental colitis

  • María Laura Anzoise
  • Angeles Rodríguez Basso
  • Julieta Sofía Del Mauro
  • Andrea Carranza
  • Graciela López Ordieres
  • Susana Gorzalczany
Original Article

Abstract

Methyl gallate is a gallotannin widely distributed in nature. Previous studies have demonstrated its antioxidant, anti-inflammatory, antimicrobial and anti-tumor activities. In the present study, the activity of methyl gallate on experimental models of inflammatory bowel disease has been investigated. Experimental colitis was induced in Sprague–Dawley rats through the intracolonic instillation of an acetic acid solution (2 mL, 4% v/v). Methyl gallate (100 and 300 mg/kg, p.o.) and the reference drug mesalazine (100 mg/kg, p.o.) were tested. Methyl gallate induced a significant reduction in the colon weight/length ratio and macroscopic lesion score. Besides, the malondialdehyde content and the GSSG/GSH ratio were remarkably decreased. Furthermore, the administration of methyl gallate reduced the expression of COX2, IL-6, TNFα and the severity of microscopic tissue damage induced by acetic acid, while the mean goblet cell density was significantly higher in both the group treated with methyl gallate and the one treated with mesalazine, in comparison with untreated animals. The Na+K+ATPase pump activity was recovered in treated groups (control: 827.2 ± 59.6, colitis: 311.6 ± 54.8, methyl gallate 100 mg/kg: 642.2 ± 175.0, methyl gallate 300 mg/kg: 809.7 ± 100.6, mesalazine: 525.3 ± 81.7). Methyl gallate was also found to induce a significant reduction in the castor oil-induced intestinal motility in Swiss mice, decreasing the peristalsis by 74.5 and 58.82% at 100 and 300 mg/kg p.o., respectively. This compound also antagonized the jejunum contractions induced by Ach and CaCl2. This study demonstrates that methyl gallate exerts beneficial effects in a preclinical model of intestinal disorders.

Keywords

Methyl gallate Experimental colitis Intestinal motility Antispasmodic effect 

Notes

Acknowledgements

This work was supported by Grants from Universidad de Buenos Aires, UBACYT 20020130200265BA. We extend our thanks to Bárbara Piotrkowski PhD, Universidad de Buenos Aires, IBIMOL CONICET for her assistance for GSH/GSSG quantification.

References

  1. Akiko Hiruma-Lima C, Calvo TR, Rodrigues CM, Donizete Pezzuto Andrade F, Vilegas W, Monteiro Souza Brito A (2006) Antiulcerogenic activity of Alchornea castaneaefolia: effects on somatostatin, gastrin and prostaglandin. J Ethnopharmacol 104:215–224CrossRefGoogle Scholar
  2. Algieri F, Zorrilla P, Rodriguez-Nogales A, Garrido-Mesa N, Bañuelos O, Reyes González-Tejero M, Casares-Porcel M, Molero-Mesa J, Zarzuelo A, Utrilla MP, Rodriguez-Cabezas ME, Galvez J (2013) Intestinal anti-inflammatory activity of hydroalcoholic extracts of Phlomis purpurea L. and Phlomis lychnitis L. in the trinitrobenzenesulphonic acid model of rat colitis. J Ethnopharmacol 146:750–759CrossRefPubMedGoogle Scholar
  3. Allgayer H, Kruis W, Paumgartner G, Wiebecke B, Brown L, Erdmann E (1988) Inverse relationship between colonic (Na+K+)-ATPase activity and degree of mucosal inflammation in inflammatory bowel disease. Dig Dis Sci 33:417–422CrossRefPubMedGoogle Scholar
  4. Calvo TR, Pinheiro Lima Z, Scaramelo Silva J, Rodrigues Ballesteros KV, Pellizzon CH, Akiko Hiruma-Lima C, Tamashiro J, Monteiro Souza Brito AR, Kiomi Takahira R, Villegas W (2007) Constituents and antiulcer effect of Alchornea glandulosa: activation of cell proliferation in gastric mucosa during the healing process. Biol Pharm Bull 30:451–459CrossRefPubMedGoogle Scholar
  5. Cavalher-Machado SC, Rosas EC, Brito F, Heringe AP, de Oliveira RR, Kaplan MA, Figueiredo MR, Henriques M (2008) The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. Int Immunopharmacol 8:1552–1560CrossRefPubMedGoogle Scholar
  6. Chena JC, Hob TY, Changa YS, Wuc SL, Hsiang CY (2006) Anti-diarrheal effect of Galla Chinensis on the Escherichia coli heat-labile enterotoxin and ganglioside interaction. J Ethnopharmacol 103:385–391CrossRefGoogle Scholar
  7. Correa LB, Padua TA, Seito LN, Costa TE, Silva MA, Candea AL, Rosas EC, Henriques MG (2016) Anti-inflammatory effect of methyl gallate on experimental arthritis: inhibition of neutrophil recruitment. Production of inflammatory mediators, and activation of macrophages. J Nat Prod 79:1554–1566CrossRefPubMedGoogle Scholar
  8. Garrido-Mesa N, Camuesco D, Arribas B, Comalada M, Bailón E, Cueto-Sola M, Utrilla P, Nieto A, Zarzuelo A, Rodríguez-Cabezas ME, Gálvez J (2011) The intestinal anti-inflammatory effect of minocycline in experimental colitis involves both its immunomodulatory and antimicrobial properties. Pharmacol Res 63:308–319CrossRefPubMedGoogle Scholar
  9. Gorzalczany S, López P, Acevedo C, Ferraro G (2011) Anti-inflammatory effect of Lithrea molleoides extracts and isolated active compounds. J Ethnopharmacol 133:994–998CrossRefPubMedGoogle Scholar
  10. Gorzalczany S, Moscatelli V, Acevedo C, Ferraro G (2013) Spasmolytic activity of Artemisia copa aqueous extract and isolated compounds. Nat Prod Res 27:1007–1101CrossRefPubMedGoogle Scholar
  11. Kannan N, Guruvayoorappan C (2013) Protective effect of Bauhinia tomentosa on acetic acid induced ulcerative colitis by regulating antioxidant and inflammatory mediators. Intl Immunopharmacol 16:57–66CrossRefGoogle Scholar
  12. Kaulmann A, Bohn T (2016) Bioactivity of polyphenols: preventive and adjuvant strategies toward reducing inflammatory bowel diseases-promises, perspectives, and pitfalls. Oxid Med Cell Longev.  https://doi.org/10.1155/2016/9346470 PubMedPubMedCentralGoogle Scholar
  13. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim SJ, Jin M, Lee E, Moon TC, Quan Z, Yang JH, Son KH, Kim KU, Son JK, Chang HW (2006) Effects of methyl gallate on arachidonic acid metabolizing enzymes: cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch Pharm Res 29:874–878CrossRefPubMedGoogle Scholar
  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Che 193:263–275Google Scholar
  16. Magro F, Fraga S, Ribeiro T, Soares-da-Silva P (2005) Regional intestinal adaptations in Na+, K+-ATPase in experimental colitis and the contrasting effects of interferon-γ. Acta Physiol Scand 183:191–199CrossRefPubMedGoogle Scholar
  17. Mariotto S, Esposito E, Di Paola R, Ciampa A, Mazzon E, Carcereri de Prati A, Darra E, Vincenzi S, Cucinotta G, Caminiti R, Suzuki H, Cuzzocrea S (2008) Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice. Pharmacol Res 57:110–124CrossRefPubMedGoogle Scholar
  18. Mazzolin LP, de Almeida Kiguti LR, Oliveira da Maia E, Luchesi Fernandes LT, Machado da Rocha LR, Vilegas W, Sampaio Pupo A, Di Stasi LC, Hiruma-Lima CA (2013) Antidiarrheal and intestinal anti-inflammatory activities of a methanolic extract of Qualea parviflora Mart in experimental models. J Ethnopharmacol 150:1016–1023CrossRefPubMedGoogle Scholar
  19. Mehmood MH, Munir S, Khalid UA, Asrar M, Gilani AH (2015) Antidiarrhoeal, antisecretory and antispasmodic activities of Matricaria chamomilla are mediated predominantly through K(+)-channels activation. BMC Complement Altern Med 75:1–9Google Scholar
  20. Minaiyan M, Asghari G, Taheri D, Saeidi M, Nasr-Esfahani S (2014) Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats. Avicenna J Phytomed 4:127–136PubMedPubMedCentralGoogle Scholar
  21. Moura F, Queiroz de Andrade K, Farias dos Santos J, Pimentel Araújo O, Oliveira Fonseca Goulart M (2015) Antioxidant therapy for treatment of inflammatory bowel disease: does it work? Redox Biol 6:617–639CrossRefPubMedPubMedCentralGoogle Scholar
  22. Neurath M (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14:329–342CrossRefPubMedGoogle Scholar
  23. Paiva LAF, Gurgel LA, Silva RM, Tomé AR, Gramosa NV, Silveira ER, Santos FA, Rao VS (2003) Anti-inflammatory effect of kaurenoic acid, a diterpene from Copaifera langsdorffii on acetic acid-induced colitis in rats. Vascul Pharmacol 39:303–307CrossRefGoogle Scholar
  24. Priyamvada S, Gomes R, Gill RK, Seema S, Alrefai WA, Dudeja PK (2015) Mechanisms underlying dysregulation of electrolyte absorption in inflammatory bowel disease-associated diarrhea. Inflamm Bowel Dis 21:2926–2935CrossRefPubMedPubMedCentralGoogle Scholar
  25. Randhawa PK, Singh K, Singh N, Jaggi AS (2014) Review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 18:279–288CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rezaie A, Parker RD, Abdollahi M (2007) Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 52:2015–2202CrossRefPubMedGoogle Scholar
  27. Rodriguez-Ariza A, Toribio F, Lopez-Barea J (1994) Rapid determination of glutathione status in fish liver using high-performance liquid chromatography and electrochemical detection. J Chromatogr B656:311–318CrossRefGoogle Scholar
  28. Sikander A, Rana SV, Prasad KK (2009) Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin Chim Acta 403:47–55CrossRefPubMedGoogle Scholar
  29. Somani SJ, Modi KP, Majumdar AS, Sadarani BN (2015) Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother Res 29:339–350CrossRefPubMedGoogle Scholar
  30. Uddin SJ, Shilpi JA, Alama SMS, Alamgir M, Rahmanb MT, Sarker SD (2005) Antidiarrhoeal activity of the methanol extract of the barks of Xylocarpus moluccensis in castor oil- and magnesium sulphate-induced diarrhoea models in mice. J Ethnopharmacol 101:139–143CrossRefPubMedGoogle Scholar
  31. Wang CR, Zhou R, Ng TB, Wong JH, Qiao WT, Liu F (2014) First report on isolation of methyl gallate with antioxidant, anti-HIV-1 and HIV-1 enzyme inhibitory activities from a mushroom (Pholiota adiposa). Environ Toxicol Pharmacol 37:626–637CrossRefPubMedGoogle Scholar
  32. Zancheta D, Troiano JA, Potje SR, Cavalari P, Sumida DH, Antoniali C (2015) The PI3K-Akt-eNOS pathway is involved in aortic hyporeactivity to Phenylephrine associated with late pregnancy in spontaneously hypertensive rats. Life Sci 122:78–86CrossRefPubMedGoogle Scholar
  33. Zgheel F, Alhosin M, Rashid S, Burban M, Auger C, Schini-Kerth VB (2014) Redox-sensitive induction of Src/PI3-kinase/Akt and MAPKs pathways activate eNOS in response to EPA: DHA. PLoS One 9:e105102CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Pharmacology Chair, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Investigaciones Cardiológicas, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations