Inflammopharmacology

, Volume 26, Issue 3, pp 829–838 | Cite as

Effects of glutamine, taurine and their association on inflammatory pathway markers in macrophages

  • Talita Sartori
  • Guilherme Galvão dos Santos
  • Amanda Nogueira-Pedro
  • Edson Makiyama
  • Marcelo Macedo Rogero
  • Primavera Borelli
  • Ricardo Ambrósio Fock
Original Article

Abstract

The immune system is essential for the control and elimination of infections, and macrophages are cells that act as important players in orchestrating the various parts of the inflammatory/immune response. Amino acids play important role in mediating functionality of the inflammatory response, especially mediating macrophages functions and cytokines production. We investigated the influence of glutamine, taurine and their association on the modulation of inflammatory pathway markers in macrophages. The RAW 264.7 macrophage cell line was cultivated in the presence of glutamine and taurine and proliferation rates, cell viability, cell cycle phases, IL-1α, IL-6, IL-10 and TNF-α as well as H2O2 production and the expression of the transcription factor, NFκB, and its inhibitor, IκBα, were evaluated. Our results showed an increase in viable cells and increased proliferation rates of cells treated with glutamine concentrations over 2 mM, as well as cells treated with both glutamine and taurine. The cell cycle showed a higher percentage of cells in the phases S, G2 and M when they were treated with 2 or 10 mM glutamine, or with glutamine and taurine in cells stimulated with lipopolysaccharide. The pNFκB/NFκB showed reduced ratio expression when cells were treated with 10 mM of glutamine or with glutamine in association with taurine. These conditions also resulted in reduced TNF-α, IL-1α and H2O2 production, and higher production of IL-10. These findings demonstrate that glutamine and taurine are able to modulate macrophages inflammatory pathways, and that taurine can potentiate the effects of glutamine, illustrating their immunomodulatory properties.

Keywords

Glutamine Taurine Macrophages NFκB Cytokines 

Notes

Acknowledgements

This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo FAPESP (Grant no. 2016/16463-8). Rogero MM, Borelli P and Fock RA are fellows of the Conselho Nacional de Pesquisa e Tecnologia (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491. doi: 10.3389/fimmu.2014.00491.eCollection CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ardawi MS, Newsholme EA (1983) Glutamine metabolism in lymphocytes of the rat. Biochem J 212:835–842. doi: 10.1042/bj2120835 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boelens PG, Houdijk AP, de Thouars HN, Teerlink T, van Engeland MI, Haarman HJ, van Leeuwen PA (2003) Plasma taurine concentrations increase after enteral glutamine supplementation in trauma patients and stressed rats. Am J Clin Nutr 77:250–256CrossRefPubMedGoogle Scholar
  4. Calder PC (2003) Immunonutrition. BMJ 327:117–118CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cruzat VF, Tirapegui J (2009) Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise. Nutrition 25:428–435. doi: 10.1016/j.nut.2008.09.014 CrossRefPubMedGoogle Scholar
  6. Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112:935–945. doi: 10.1182/blood-2007-12-077917.Review CrossRefPubMedGoogle Scholar
  7. Eagle H (1955) The growth requirements of two mammalian cell lines in tissue culture. Trans Assoc Am Physicians 68:78–81PubMedGoogle Scholar
  8. Eagle H, Oyama VI, Levy M, Horton CL, Fleischman R (1956) The growth response of mammalian cells in tissue culture to l-glutamine and l-glutamic acid. J Biol Chem 218:607–616PubMedGoogle Scholar
  9. Engström W, Zetterberg A (1984) The relationship between purines, pyrimidines, nucleosides, and glutamine for fibroblast cell proliferation. J Cell Physiol 120:233–241. doi: 10.1002/jcp.1041200218 CrossRefPubMedGoogle Scholar
  10. Ferreira IK (2007) Nutritional therapy in intensive care unit. Rev Bras Ter Intensiva 19:90–97CrossRefPubMedGoogle Scholar
  11. Fock RA, Vinolo MA, Crisma AR, Nakajima K, Rogero MM, Borelli P (2008) Protein-energy malnutrition modifies the production of interleukin-10 in response to lipopolysaccharide (LPS) in a murine model. J Nutr Sci Vitaminol 54:371–377. doi: 10.3177/jnsv.54.371 CrossRefPubMedGoogle Scholar
  12. Fock RA, Rogero MM, Vinolo MA, Curi R, Borges MC, Borelli P (2010) Effects of protein-energy malnutrition on NF-kappaB signalling in murine peritoneal macrophages. Inflammation 33:101–109. doi: 10.1007/s10753-009-9163-x CrossRefPubMedGoogle Scholar
  13. Fukuda K, Hirai Y, Yoshida H, Nakajima T, Usui T (1982) Free amino acid content of lymphocytes and granulocytes compared. Clin Chem 28:1758–1761PubMedGoogle Scholar
  14. Gardiner CM, Mills KH (2016) The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases. Semin Immunol 28:343–350. doi: 10.1016/j.smim.2016.03.001 CrossRefPubMedGoogle Scholar
  15. Gilmore TD (2006) NF-kB: from basic research to human disease. Oncogene (Reviews) 51:6679–6899Google Scholar
  16. Grimble RF (2005) Immunonutrition. Curr Opin Gastroenterol 21:216–222CrossRefPubMedGoogle Scholar
  17. Hubert-Buron A, Leblond J, Jacquot A (2006) Glutamine pretreatment reduces IL-8 production in human intestinal epithelial cells by limiting IkappaB-alpha ubiquitination. J Nutr 136:1461–1465CrossRefPubMedGoogle Scholar
  18. Karabay AZ, Koc A, Gurkan-Alp AS, Buyukbingol Z, Buyukbingol E (2015) Inhibitory effects of indole α-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages. Cell Biochem Funct 33:121–127. doi: 10.1002/cbf.3095 CrossRefPubMedGoogle Scholar
  19. Kim H (2011) Glutamine as an immunonutrient. Yonsei Med J 52:892–897. doi: 10.3349/ymj.2011.52.6.892 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim C, Cha YN (2009) Production of reactive oxygen and nitrogen species in phagocytes is regulated by taurine chloramine. Adv Exp Med Biol 643:463–472. doi: 10.1007/978-0-387-75681-3_48 CrossRefPubMedGoogle Scholar
  21. Kim C, Cha YN (2014) Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 46:89–100. doi: 10.1007/s00726-013-1545-6 CrossRefPubMedGoogle Scholar
  22. Kim JW, Kim C (2005) Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-kappaB. Biochem Pharmacol 70:1352–1360. doi: 10.1016/j.bcp.2005.08.006 CrossRefPubMedGoogle Scholar
  23. Lacey JM, Wilmore DW (1990) Is glutamine a conditionally essential amino acid? Nutr Rev 48:297–309. doi: 10.1111/j.1753-4887.1990.tb02967 CrossRefPubMedGoogle Scholar
  24. Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, Li N, Wei F (2015) Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Research 4. doi:10.12688/f1000research.7010.1 (pii: F1000 Faculty Rev-1465) Google Scholar
  25. Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20. doi: 10.1007/s00726-012-1361-4 CrossRefPubMedGoogle Scholar
  26. Menzie J, Prentice H, Wu JY (2013) Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci 3:877–907. doi: 10.3390/brainsci3020877 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Miyazaki T, Matsuzaki Y (2014) Taurine and liver diseases: a focus on the heterogeneous protective properties of taurine. Amino Acids 46:101–110. doi: 10.1007/s00726-012-1381-0 CrossRefPubMedGoogle Scholar
  28. Moe-Byrne T, Brown JV, McGuire W (2016) Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev 4:CD001457. doi: 10.1002/14651858.CD001457 PubMedGoogle Scholar
  29. Newsholme P (2001) Why is l-glutamine metabolism important to cells of the immune system in health, post-injury, surgery or infection? J Nutr 131:2515S–2522SCrossRefPubMedGoogle Scholar
  30. Newsholme P, Costa Rosa LF, Newsholme EA, Curi R (1996) The importance of fuel metabolism to macrophage function. Cell Biochem Funct 14:1–10. doi: 10.1002/cbf.644 CrossRefPubMedGoogle Scholar
  31. Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R (2003) Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct 21:1–9. doi: 10.1002/cbf.1003 CrossRefPubMedGoogle Scholar
  32. Nishanth RP, Jyotsna RG, Schlager JJ, Hussain SM, Reddanna P (2011) Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-NFκB signaling pathway. Nanotoxicology 5:502–516. doi: 10.3109/17435390.2010.541604 CrossRefPubMedGoogle Scholar
  33. Rogero MM, Borelli P, Fock RA, Pires ISO, Tirapegui J (2008a) Glutamine supplementation reverses impaired macrophage function resulting from early weaning in mice. Nutrition 24:589–598. doi: 10.1016/j.nut.2008.02.005 CrossRefPubMedGoogle Scholar
  34. Rogero MM, Borelli P, Vinolo M, Fock R, Pires I, Tirapegui J (2008b) Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice. Clin Nutr 27:386–397. doi: 10.1016/j.clnu.2008.03.004 CrossRefPubMedGoogle Scholar
  35. Rogero MM, Tirapegui J, Vinolo MAR, Borges MC, Castro IA, Pires ISO et al (2008c) Dietary glutamine supplementation increases the function of peritoneal macrophages and hemopoiesis in early weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guérin. J Nutr 138:1343–1348CrossRefPubMedGoogle Scholar
  36. Stow JL, Condon ND (2016) The cell surface environment for pathogen recognition and entry. Clin Transl Immunol 5:e71. doi: 10.1038/cti.2016.15 CrossRefGoogle Scholar
  37. Sun K, Chen Y, Liang SY, Liu ZJ, Liao WY, Ou ZB, Tu B, Gong JP (2012) Effect of taurine on IRAK4 and NF-kappa B in Kupffer cells from rat liver grafts after ischemia-reperfusion injury. Am J Surg 204:389–395. doi: 10.1016/j.amjsurg.2011.10.020 CrossRefPubMedGoogle Scholar
  38. Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB (1997) Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 272:G879–G884PubMedGoogle Scholar
  39. Wischmeyer PE, Riehm J, Singleton KD et al (2003) Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition 19:1–6. doi: 10.1016/S0899-9007(02)00839-0 CrossRefPubMedGoogle Scholar
  40. Yassad A, Husson A, Bion A, Lavoinne A (2000) Synthesis of interleukin 1beta and interleukin 6 by stimulated rat peritoneal macrophages: modulation by glutamine. Cytokine 12:1288–1291. doi: 10.1006/cyto.1999.0729 CrossRefPubMedGoogle Scholar
  41. Zhang X, Lu H, Wang Y, Liu C, Zhu W, Zheng S, Wan F (2015) Taurine induces the apoptosis of breast cancer cells by regulating apoptosis-related proteins of mitochondria. Int J Mol Med 35:218–226. doi: 10.3892/ijmm.2014.2002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Talita Sartori
    • 1
  • Guilherme Galvão dos Santos
    • 1
  • Amanda Nogueira-Pedro
    • 1
  • Edson Makiyama
    • 1
  • Marcelo Macedo Rogero
    • 2
  • Primavera Borelli
    • 1
  • Ricardo Ambrósio Fock
    • 1
  1. 1.Department of Clinical and Toxicological Analysis, School of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Department of Nutrition, School of Public HealthUniversity of São PauloSão PauloBrazil

Personalised recommendations