Advertisement

Inflammopharmacology

, Volume 21, Issue 1, pp 1–9 | Cite as

The kinin system in hypertensive pathophysiology

  • Jagdish N. Sharma
Review Article

Abstract

Cardiovascular diseases are the prime cause of death in the world. The kallikrein–kinin system has been implicated in the pathophysiology of the vascular smooth muscle and cardiac dysfunctions. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction and left ventricular hypertrophy, have suggested that the reduced activity of the local kallikrein–kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective actions of the angiotensin-converting enzyme inhibitors are primarily dependent on protecting the kinin-forming components, which may cause regression of the left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension, cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.

Keywords

Kallikrein–kinin system Cardio protection Hypertension Cardiac diseases Angiotensin-converting enzyme inhibitors 

References

  1. Abbas SA, Sharma JN, Yusof APM (1999a) Effect of bradykinin and its antagonist on survival time after coronary artery occlusion in rats. Gen Pharmacol 33:243–247CrossRefGoogle Scholar
  2. Abbas SA, Sharma JN, Yusof APM (1999b) The effect of bradykinin and its antagonist on survival time after coronary artery occlusion in hypertensive rats. Immunopharmacology 44:93–98PubMedCrossRefGoogle Scholar
  3. Abdella N, Arouj M Al, Nakhi A Al, Assoussi A Al, Moussa M (1998) Non-insulin-dependent diabetes in Kuwait: prevalence rates and associated risk factors. Diabet Res Clin Pract 42:187–196CrossRefGoogle Scholar
  4. Adetuyibi A, Mills IH (1972) Relationship between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man. Lancet 2:203–207PubMedCrossRefGoogle Scholar
  5. Akbar A, Sharma JN, Yusof APM (1998) Potentiation of bradykinin-induced responses in the intact and denuded epithelium of guinea pig tracheal preparations. Tissue React XX:95–100Google Scholar
  6. Almeida FA, Stella RCR, Voos A (1981) Malignant hypertension: a syndrome associated with low plasma kininogen and kinin potentiating factor. Hypertension 3:46–50CrossRefGoogle Scholar
  7. Amundsen E, Putter J, Friberger P, Knos M, Larsbraten M, Glaeseaon G (1979) Method for the determination of glandular kallikrein by means of chromogenic tripeptide substrate. Adv Exp Med Biol 120A:83–95PubMedGoogle Scholar
  8. Antonacio M (1982) Angiotensin converting enzyme (ACE) inhibitors. Annu Rev Pharmacol Toxicol 22:57–87CrossRefGoogle Scholar
  9. Boyde TRC, Rahmatullah M (1980) Optimization of conditions for the colorimetric determination of citrulline using monoxime. Anal Biochem 107:424–431PubMedCrossRefGoogle Scholar
  10. Braunwald E (1997) Cardiovascular medicine a turn of the millennium: triumphs, concern and opportunities. New Eng J Med 337:1360–1369PubMedCrossRefGoogle Scholar
  11. Burch RM (1990) Kinin signal transduction: role of phosphoinositides and eicosanoids. J Cardiovasc Pharmacol 15(Suppl 6):S44–S46PubMedGoogle Scholar
  12. Chao J, Chao L (1998) Kallikrein gene therapy in hypertension, cardiovascular and renal diseases. Gen Ther Mol Biol 1:301–308Google Scholar
  13. Chao J, Chao L (2005) Kallikrein–kinin in stroke, cardiovascular and renal disease. Exp Physiol 90(3):291–298PubMedCrossRefGoogle Scholar
  14. Chao J, Bledsoe G, Yin H, Chao L (2006) The tissue kallikrein–kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction. Biol Chem 387(6):665–675PubMedCrossRefGoogle Scholar
  15. Cheng CP, Onishi K, Ohte N (1998) Functional effects of endogenous bradykinin in congestive heart failure. Am J Coll Cardiol 31:1679–1686CrossRefGoogle Scholar
  16. Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648CrossRefGoogle Scholar
  17. De Freitas FM, Farraco EZ, De Azevedo DF (1964) General circulatory alterations induced by intravenous infusion of synthetic bradykinin in man. Circulation 29:66–70CrossRefGoogle Scholar
  18. Emanuelia C, Madeddu P (2003) Human tissue kallikrein: a new bullet for the treatment of ischemia. Curr Pharm Des 9(7):589–597PubMedCrossRefGoogle Scholar
  19. Farmer SG, Burch RM (1992) Biochemical and molecular pharmacology of kinin receptors. Annu Rev Pharmacol Toxicol 32:511–536PubMedCrossRefGoogle Scholar
  20. Figueiredo EL, Garcia Leao FV, De Oliveira LV, Moreira Mda C, De souza Figueiredo AF (2006) The amidase activity of human tissue kallikrein is significantly lower in the urine of patients with systolic heart failure. J Cardiovasc Fail 12(8):653–658CrossRefGoogle Scholar
  21. Friend LR, Morris BJ, Gaffney PT, Griffiths LR (1996) Examination of the role of nitric oxide synthase and renal kallikrein as candidate genes for essential hypertension. Exp Pharmacol Physiol 23:564CrossRefGoogle Scholar
  22. Green LC, Wagner DA, Glagowski J (1982) Analysis of nitrate, nitrite and15N nitrate in biological fluids. Anal Biochem 126:131–138PubMedCrossRefGoogle Scholar
  23. Harvey JN, Jaffa AA, Margolius HS (1990) Renal kallikrein abnormalities of diabetic kidney. Diabetes 39:299–303PubMedCrossRefGoogle Scholar
  24. Hashimto K, Hamamoto H, Honda Y (1978) Changes in components of the kinin system and hemodynamics in acute myocardial infarction. Am Heart J 95:619–626CrossRefGoogle Scholar
  25. Horton JK, Martin RC, Kalinka S, Cushing A, Kitcher JP, O’Sullivan MJ, Baxendale PM (1992) Enzyme immuno assays for the estimation of adenosine 3’, 5’ cyclic monophosphate and guanosine 3’, 5’ cyclic monophosphate in biological fluids. J Immunol Methods 155(1):31–40PubMedCrossRefGoogle Scholar
  26. Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, Schmaier AH (2003) Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes 52(5):1215–1221PubMedCrossRefGoogle Scholar
  27. Jaffa AA, Miller DH, Bailey GS, Chao J, Margolius HS (1987) Abnormal regulation of renal kallikrein in experimental diabetes. J Clin Invest 80:1651–1659PubMedCrossRefGoogle Scholar
  28. Jaffa AA, Rust PF, Mayfield RK (1995) Kinin, a mediator of diabetes induced glomerular hyper filtration. Diabetes 44:156–160PubMedCrossRefGoogle Scholar
  29. James FW, Donaldson VH (1981) Decreased exercise tolerance and hypertension in severe hereditary deficiency of plasma kininogen. Lancet 1:889PubMedCrossRefGoogle Scholar
  30. Kailasam MT, Martinez JA, Cervenka JH, Yen SSC, O’Connor DT, Parmer RJ (1998) Racial differences in renal kallikrein excretion: effect of the ovulatory cycle. Kidney Int 54:1652–1658PubMedCrossRefGoogle Scholar
  31. Katori M, Majima M (1997) Role of the renal kallikrein–kinin system in the development of hypertension. Immunopharmacology 36:237–242PubMedCrossRefGoogle Scholar
  32. Kichuck MR, Seyedi N, Zhang X (1996) Regulation of nitric oxide production in human coronary micro vessels and the contribution of local kinin formation. Circulation 94:44–51CrossRefGoogle Scholar
  33. Koch M, Wendorf M, Dendorfer A, Wolfrum S, Schulze K, Spillmann F, Schultheiss HP, Tschope C (2003) Cardiac kinin lecel in experimental diabetes mellitus: role of kinases. Am J Physiol Heart Circ Physiol 285(1):H418–H423PubMedGoogle Scholar
  34. Koide A, Zeitlin IJ, Parratt JR (1993) Kinin formation in ischemic heart and aorta of anaesthetized rats. J Physiol 467:125PGoogle Scholar
  35. Leeb-Lundberg LMF, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL (2005) International Union of Pharmacology. XLV. Classification of the kinin receptor family: From Molecular Mechanisms to Pathophysiological Consequences. Pharmacol Rev 57:27–77PubMedCrossRefGoogle Scholar
  36. Linz W, Wiemer G, Scholkens BA (1995) Contribution of kinins to the cardiovascular action of converting-enzyme inhibitors. Pharmacol Rev 47:25–50PubMedGoogle Scholar
  37. Linz W, Wiemer G, Scholkens BA (1994) Cardioprotective actions of bradykinin in myocardial ischemia and left ventricular hypertrophy. Braz J Med Biol Res 8:1949–1954Google Scholar
  38. Linz W, Wiemer G, Scholkens BA (1993) Bradykinin prevents left ventricular hypertrophy in rats. J Hypertens 11(Suppl 5):S96–S97Google Scholar
  39. Locherner W, Parratt JR (1966) A comparison of the effects of locally and systemically administration of kinin on coronary blood flow and myocardial metabolism. Br J Pharmacol Chemother 26:17–26CrossRefGoogle Scholar
  40. Madeddu P, Milia AF, Salis MB (1998) Renovascular hypertension in bradykinin B2 receptor knockout mice. Hypertension 23:503–509CrossRefGoogle Scholar
  41. Majima M, Nishiyama K, Iguchi Y, Yao K, Ogino M, Ohno T, Sunahara N, Katoh K, Tatemichi N, Takei Y, Katori M (1996) Determination of bradykinin-(1-5) in inflammatory exudates by a new ELISA as a reliable indicator of bradykinin generation. Inflamm Res 45:416–423PubMedCrossRefGoogle Scholar
  42. Margolius HS, Geller R, DeJong W (1972) Altered urinary kallikrein excretion in rats hypertension. Circ Res 30:358–362PubMedCrossRefGoogle Scholar
  43. Margolius HS, Geller R, Pisano JJ (1971) Altered urinary kallikrein excretion in human hypertension. Lancet 2:1063–1065CrossRefGoogle Scholar
  44. Margolius HS, Horwwitz D, Pisano JJ (1974) Urinary kallikrein excretion in hypertensive man: relationship to sodium intake and sodium-retaining steroids. Circ Res 35:820–825PubMedCrossRefGoogle Scholar
  45. Montanari D, Yin H, Dobrzynski E, Agata J, Yoshida H, Chao J, Chao L (2005) Kallikrein gene delivery improves serum glucose and lipid profiles and cardiac function in streptozotocin-induced diabetic rats. Diabetes 54:1573–1580PubMedCrossRefGoogle Scholar
  46. Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A (2005) The kallikrein–kinin system: current and future pharmacological targets. J Pharmacol Sci 99(1):6–38PubMedCrossRefGoogle Scholar
  47. McGiff JC, Itskovitz HD, Terrango NA (1975) The action of bradykinin and eledoicin in the canine isolated kidney: a relationship to prostaglandins. Clin Sci Mol Med 49:125–131PubMedGoogle Scholar
  48. Mills IH (1982) The renal kallikrein–kinin system and sodium excretion. Q J Exp Physiol 23:175–180Google Scholar
  49. Mohsin SSJ, Majima M, Katori M, Sharma JN (1992) Important suppressive roles of the kallikrein–kinin system during the developmental stage of hypertension in spontaneously hypertensive rats. Asia Pacific J Pharmacol 7:73–82Google Scholar
  50. Nolly HL, Britos J (1981) Kinin-forming enzyme in rat cardiac tissue. Am J Physiol 265:H1209–H1214Google Scholar
  51. Nolly HL, Carretero OA, Sclicli AG (1993) Kallikrein release by vascular tissue. Am J Physiol 265:H1209–H1214PubMedGoogle Scholar
  52. Platts JK, Meadows P, Harvey JN (1996) The relationship between urinary kallikrein and glomerular filtration rate (GFR) in type-1 diabetes: studies with lithium. Immunopharmacology 33:351–353PubMedCrossRefGoogle Scholar
  53. Pravence M, Ken V, Kunes J (1991) Cosegregation of blood pressure with kallikrein gene family polymorphism. Hypertension 17:242–246CrossRefGoogle Scholar
  54. Regoli D (1984) Neurohumoral regulation of precapillary vessels: the kallikrein–kinin system. J Cardiovasc Pharmacol 6(Suppl 3):S401–S412PubMedCrossRefGoogle Scholar
  55. Rosatelli TB, Roselino AM, Dellalibera-Joviliano R, Reis ML, Donadi EA (2005) Increased activity of plasma and tissue kallikreins, plasma kininase II and salivary kallikrein in Pemphigus foliaceus (fogo selvagem). Br J Dermatol 152:650–657PubMedCrossRefGoogle Scholar
  56. Rubin LE, Levi R (1995) Protective role of bradykinin in cardiac anaphylaxis. Circ Res 76:434–440PubMedCrossRefGoogle Scholar
  57. Schini VB, Boulanger C, Regoli D, Vonhoutte PM (1990) Bradykinin stimulates the production of cyclicGMP via activation of B2 receptors in cultured porcine aortic endothelial cells. J Pharmacol Exp Ther 43:1823–1827Google Scholar
  58. Scholkens BA (1996) Kinins in the cardiovascular system. Immunopharmacology 33:209–217PubMedCrossRefGoogle Scholar
  59. Sharma JN (2006) The tissue kallikrein–kininogem–kinin pathways: role in cardiovascular system. Arch Med Res 37:299–306PubMedCrossRefGoogle Scholar
  60. Sharma JN (2005) The kallikrein–kinin system: from mediator of inflammation to modulator of cardioprotection. Immunopharmacology 12(5):591–596Google Scholar
  61. Sharma JN (2003) Does the kinin system mediate in cardiovascular abnormalities? An overview. J Clin Pharmacol 43:1187–1195PubMedCrossRefGoogle Scholar
  62. Sharma JN (1993) Therapeutic prospects of bradykinin antagonists. Gen Pharmacol 24:267–274PubMedCrossRefGoogle Scholar
  63. Sharma JN (1992) Involvement of the kinin-forming system in physiopathology of rheumatoid inflammation. Agents Actions 38(III):343–361Google Scholar
  64. Sharma JN (1990) Does kinin mediate the hypotensive action of angiotensin converting enzyme (ACE) inhibitors? Gen Pharmacol 21(4):451–457PubMedCrossRefGoogle Scholar
  65. Sharma JN (1989) Contribution of kinin system to the antihypertensive action of angiotensin converting enzyme inhibitors. Adv Exp Med Biol 247A:197–205PubMedGoogle Scholar
  66. Sharma JN, Abbas SA (2005) Bradykinin antagonist abolishes beneficial effect of captopril on duration of survival after acute coronary artery ligation in hypertensive rats. Pharmacol Res 52:211–215PubMedCrossRefGoogle Scholar
  67. Sharma JN, Amrah SS, Noor AR (1995) Suppression of hypotensive responses of captopril and enalapril by kallikrein inhibitor aprotinin in spontaneously hypertensive rats. Pharmacology 50:363–369PubMedCrossRefGoogle Scholar
  68. Sharma JN, Buchanan WW (1994) Pathogenic responses of bradykinin system in chronic inflammatory rheumatoid disease. Exp Toxicol Pathol 46:421–433PubMedCrossRefGoogle Scholar
  69. Sharma JN, Fernandez PG, Laher I (1984) Differential sensitivity of Dahl salt-sensitive and salt-resistant rats to the hypotensive action of acute nifedipine administration. Can J Physiol Pharmacol 62:241–243PubMedCrossRefGoogle Scholar
  70. Sharma JN, Fernandez PG, Kim BK (1983) Cardiac regression and blood pressure control in Dahl rats treated with enalapril maleate (MK 421), an angiotensin converting enzyme inhibitor. J Hypertens 1:251–256PubMedCrossRefGoogle Scholar
  71. Sharma JN, Mohsin SSJ (1990) The role of chemical mediators in pathogenesis of inflammation with emphasis on the kinin system. Exp Pathol 38:73–96PubMedCrossRefGoogle Scholar
  72. Sharma JN (2002) Cardiovascular properties of the kallikrein–kinin system. Curr Med Res Opin 18:10–17PubMedCrossRefGoogle Scholar
  73. Sharma JN, Uma K (2002) Effect of captopril on urinary kallikrein, blood pressure and myocardial hypertrophy in diabetic spontaneously hypertensive rats. Pharmacology 64:196–200PubMedCrossRefGoogle Scholar
  74. Sharma JN, Uma K, Yusof APM (1999) Altered cardiac tissue and plasma kininogen levels in hypertensive and diabetic rats. Immunopharmacology 43:129–132PubMedCrossRefGoogle Scholar
  75. Sharma JN, Uma K, Yusof APM (1998) Left ventricular hypertrophy and its relation to cardiac kinin-forming system in hypertensive and diabetic rats. Int J Cardiol 63:229–235PubMedCrossRefGoogle Scholar
  76. Sharma JN, Uma K (1996) Cardiac kallikrein in hypertensive and normotensive rats with and without diabetes. Immunopharmacology 33:341–343PubMedCrossRefGoogle Scholar
  77. Sharma JN, Uma K, Noor AR (1996) Blood pressure regulation by the kallikrein–kinin system. Gen Pharmacol 27:55–63PubMedCrossRefGoogle Scholar
  78. Sharma JN, Zeitlin IJ (1981) Altered plasma kininogen in clinical hypertension. Lancet 1:125–126Google Scholar
  79. Sharma JN, Zeitlin IJ (1977) Indomethacin in low concentration potentiates the actions of some spasmogens on the isolated estrous rat uterus. J Pharm Pharmacol 29:316–317PubMedCrossRefGoogle Scholar
  80. Silberbauer K, Stanek B, Temple H (1982) Acute hypotensive effect of captopril in man modified by prostaglandin synthesis inhibition. Br J Clin Pharmacol 14:87S–93SPubMedCrossRefGoogle Scholar
  81. Smith C, Campbell S, Albano J (1999) Urinary kallikrein excretion in normotensive and hypertensive pregnancies: 8 years later. Immunopharmacol 44:177–182CrossRefGoogle Scholar
  82. Spillmann F, Van Linthout S, Schultheiss HP, Tschope C (2006) Cardioprotective mechanisms of the kallikrein–kinin system in diabetic cardiopathy. Curr Opin Nephrol Hypertens 15(1):22–29PubMedCrossRefGoogle Scholar
  83. Su JB (2006) Kinins and cardiovascular diseases. Curr Pharm Des 12(26):3423–3435PubMedCrossRefGoogle Scholar
  84. Tan Y, Wang B, Keum JS, Jaffa AA (2005) Mechanisms through which bradykinin promotes glomerular injury in diabetes. Am J Physiol Renal Physiol 288(3):F483–F492PubMedCrossRefGoogle Scholar
  85. Tschope G, Gavriluk V, Reinecke A (1996) Bradykinin excretion is increased in severely hyperglycemic streptozotocin-diabetic rats. Immunopharmacology 33:344–348PubMedCrossRefGoogle Scholar
  86. Tshope C, Reinecke A, Seidl U, Yu M, Gavriluk V, Riester U, Gohlke P, Graf K, Bader M, Hilgenfeldt U, Pesquero JB, Ritz E, Unger T (1999) Functional, biochemical, and molecular investigations of renal kallikrein–kinin system in diabetic rats. Am J Physiol 277:H2333–H2340Google Scholar
  87. Vegh A, Rapp JG, Parratt JR (1994) Attenuation of the antiarrhythmic effects of ischemia preconditioning by blocked of bradykinin B2 receptors. Br J Pharmacol 107:1167–1172CrossRefGoogle Scholar
  88. Vegh A, Szekeres L, Parratt RJ (1991) Local intracoronary infusions of bradykinin profoundly reduce the severity of ischemia-induced arrhythmia in anaesthetized dogs. Br J Pharmacol 104:294–295PubMedCrossRefGoogle Scholar
  89. Vieira MAR, Moreira FM, Maack T (1994) Conversion of T-kinin to bradykinin by the rat kidney. Biochem Pharmacol 47:1693–1699PubMedCrossRefGoogle Scholar
  90. Walls TM, Sheehy R, Hartman JC (1994) Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther 270:681–689Google Scholar
  91. Wang C, Chao L, Chao J (1994) Human tissue kallikrein induces hypotension in transgenic mice. Hypertension 23:236–243PubMedCrossRefGoogle Scholar
  92. Webster ME, Gilmore JP (1964) Influence of kallidin-10 on renal function. Am J Physiol 206:714–718PubMedGoogle Scholar
  93. Woolly-Miller C, Chao J, Chao L (1989) Restriction fragment length polymorphism’s mapped in spontaneously hypertensive rats using kallikrein probs. J Hypertens 7:865–871CrossRefGoogle Scholar
  94. Zhu P, Zugga CE, Simper D (1995) Bradykinin improves post-ischemic recovery in that rat heart: role of high energy phosphate, nitric oxide and prostacycline. Cardiovacs Res 29:658–663Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Health Sciences CenterKuwait UniversitySafatKuwait

Personalised recommendations