, Volume 19, Issue 4, pp 215–225 | Cite as

Anti-nociceptive effects of Carpolobia lutea G. Don (Polygalaceae) leaf fractions in animal models

  • Lucky Lebgosi Nwidu
  • Paul Alozie Nwafor
  • Viviane Cândida da Silva
  • Clenilson Martins Rodrigues
  • Lourdes Campaner dos Santos
  • Wagner Vilegas
  • Ricardo Luiz Nunes-de-Souza
Research Article


Leaves from Carpolobia lutea (Polygalaceae) were screened to establish the antiulcer ethnomedicinal claim and to quantitatively isolate, elucidate the active compounds by semi-preparative HPLC. The anti-nociceptive effects of Carpolobia lutea (CL) G. Don (Polygalaceae) organic leaf extracts were tested in experimental models in mice. The anti-nociceptive mechanism was determined using tail-flick test, acetic acid-induced abdominal constrictions, formalin-induced hind paw licking and the hot plate test. The fractions (ethanol, ethyl acetate, chloroform, n-hexane) and crude ethyl acetate extract of CL (770 mg/kg, i.p.) produced significant inhibitions of both phases of the formalin-induced pain in mice, a reduction in acetic acid-induced writhing as well as and an elevation of the pain threshold in the hot plate test in mice. The inhibitions were greater to those produced by indomethacin (5 mg/kg, i.p.). Ethyl acetate fraction revealed cinnamic and coumaric acids derivatives, which are described for the first time in literature. These cinnamalglucosides polyphenols characterised from CL may in part account for the pharmacological activities. These findings confirm its ethnomedical use in anti-inflammatory pain and in pains from gastric ulcer-associated symptoms.


Carpolobia lutea Polygalaceae Antinociceptive HPLC isolation of cinnamalglucosides 



This study was supported by Niger Delta University Postgraduate Fellowship. Khana Local Government Council, Bori, Ogoni, Nigeria supported the predoctoral fellowship with part payment for airfare; FAPESP provided stipends for accommodation at UNESP, Arraraquara, São Paulo, Brazil. Dr. Karina Gomes assisted in the statistical analysis; Dr. Alianda Maira Cornlio, Rosana and Bete (Farmacologia, UNESP) provided technical assistance in tail-flick assay.


  1. Ajibesin KK, Ekpo AB, Bala DN et al (2007) Ethnobotanical Survey of Akwa Ibom State of Nigeria. J Ethnopharmacol 115:387–408PubMedCrossRefGoogle Scholar
  2. Amresh G, Reddy GD, Rao CV et al (2007a) Evaluation of anti-inflammatory activity of Cissampelos pareira root in rats. J Ethnopharmacol 110:526–531PubMedCrossRefGoogle Scholar
  3. Amresh G, Zeashan H, Rao Ch V et al (2007b) Prostaglandin mediated anti-inflammatory and analgesic activity of Cissampelos pareira. Acta Pharm Sci 49:153–160Google Scholar
  4. Aydin S, Demir T, Ozturk Y et al (1999) Analgesic activity of Nepeta italic L. Phytother Res 13:20–23PubMedCrossRefGoogle Scholar
  5. Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652PubMedGoogle Scholar
  6. Bors W, Saran M (1987) Radical scavenging by flavonoid antioxidants. Free Radic Res Commun 2:131CrossRefGoogle Scholar
  7. Burkill HM (1985) The useful plants of West Tropical Africa, vol. 1, 2nd edn. Royal Botanic Gardens, Kew, UK, Family A–D, pp 1–960Google Scholar
  8. Correa CR, Calixto JB (1993) Evidence of participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in mouse. Br J Pharmacol 110:193–198PubMedGoogle Scholar
  9. Etukudo I (2003) Ethnobotany: conventional and traditional uses of plants. The Verdic Press, Nigeria, p 111Google Scholar
  10. Gaertner M, Muller L, Roos JF et al (1999) Analgesic triterpines from Sebastiania schottianan roots. Phytomedicine 6:41–44PubMedGoogle Scholar
  11. Hama A, Menzaghi F (2001) Antagonist of nicotinic acetylcholine receptors (nAChR) enhances formalin-induced nociception in rats: tonic role of nAChRs in the control of pain following injury. Brain Res 888:102–106PubMedCrossRefGoogle Scholar
  12. Hamburger F (1989) In vivo testing in the study of toxicology and safety evaluation. In: A guide to general toxicology (2nd revised ed.). Karger, New York, pp 198–199Google Scholar
  13. Hidradate S, Morita S, Sugie H, Fuji Y, Harada J (2004) Phytotoxic cis-cinamoyl glucosides from Spiraea thumbergii. J Phytochem 65:731–739CrossRefGoogle Scholar
  14. Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114PubMedCrossRefGoogle Scholar
  15. Latza S, Ganser D, Berger RG (1996) Identification accumulation of 1-D-glucopyranose in developing strawberry fruit (Fragaria ananassa Duch. Cv. Kent). J Agric Food Chem 44:1367–1370CrossRefGoogle Scholar
  16. Lewis WH, Elvin-Lewis MP (1977) Medical botany. Wiley, New York, pp 1–515Google Scholar
  17. Lorke D (1983) A new approach to acute toxicity testing. Arch Toxicol 54:275–287PubMedCrossRefGoogle Scholar
  18. Mills S, Bone K (2000) Principles and practice of phytotherapy. Churchill Livingstone, Edinburgh, pp 23–24, 31–34, 229–231Google Scholar
  19. Moreira AS, Spitzer V, Schapoval EE et al (2000) Antiinflammatory activity of extracts and fractions from the leaves of Gochnatia polymorpha. Phytother Res 14:638–640PubMedCrossRefGoogle Scholar
  20. Muanya CA (2008) Natural health—how local plants help boost libido, by researchers. The Guardian Newspaper Ltd. 03/01/08Google Scholar
  21. Muanya CA, Odukoya OA (2008) Lipid peroxidation as index of activity in aphrodisiac herbs. J Plant Sci 3(1):92–98CrossRefGoogle Scholar
  22. Nwafor PA, Bassey AI (2007) Evaluation of the anti-diarrhoeal and antiulcerogenic potential of ethanol extract of Carpolobia lutea leaves in rodents. J Ethnopharmacol 111(3):619–624PubMedCrossRefGoogle Scholar
  23. Nwidu LL, Nwafor PA (2009) Gastroprotective effects of leaf extracts of Carpolobia lutea G. Don. in rats. Afr J Biotech 8(12):15–19Google Scholar
  24. Parada CA, Tambeli CH, Cunha FQ et al (2001) The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin induced nociception. Neuroscience 102:937–944PubMedCrossRefGoogle Scholar
  25. Rao ChV, Ojha SK, Amresh G et al (2003) Analgesic, antiinflammatory and antiulcerogenic activity of unripe fruits of Aegle marmelos. Acta Pharm Turcica 45:85–91Google Scholar
  26. Rodrigues CM, Rinaldo D, Santos LC, Montoro P, Piacente S, Pizza C, Hiruma-Lima CA, Souza-Brito ARM, Vilegas W (2007) Metabolic fingerprinting using direct flow injection spray ionisation tandem mass spectrometry for the characterisation of proanthocyanidins from the barks of Hancornia speciosa. Rapid Commun Mass Spectrom 21:1907–1914PubMedCrossRefGoogle Scholar
  27. Rosland JH, Tjolsen A, Maehle B et al (1990) The formalin test in mice. Effect of the formalin concentration. Pain 42:235–242PubMedCrossRefGoogle Scholar
  28. Shibata M, Ohkubo T, Takahashi H et al (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–352PubMedCrossRefGoogle Scholar
  29. Trease GE, Evans WC (1989) Pharmacognosy, 13th ed. edn. English Language Book Society, Bailliere Tindall, London, pp 683–684Google Scholar
  30. VanWauve JP, Goosens JG (1989) Arabinolactan and dextran induced ear inflammation in mice: differential inhibition by H1-antihistamines, 5-HT-serotonin antagonists and lipoxygenase blockers. Agents Action 28:78–82CrossRefGoogle Scholar
  31. Vaz ZR, Mata LV, Calixto JB (1997) Analgesic effect of the herbal medicine catuama in thermal and chemical models of nociception in mice. Phytother Res 11:101–106CrossRefGoogle Scholar
  32. Vogel GH, Vogel WH (1997) Drug discovery and evaluation. In: Pharmacological assays. Springer, Berlin, pp 360–418Google Scholar
  33. Vongtau HO, Abbah J, Ngazal IE et al (2004) Anti-nociceptive and anti-inflammatory activities of the methanolic extract of Parinari polyandra stem bark in rats and mice. J Ethnopharmacol 90:115–121PubMedCrossRefGoogle Scholar
  34. Wagner H, Bladt S, Zgainsky E (1984) Plant drug analysis. Springer, BerlinGoogle Scholar
  35. Walker AR, Silans R (1961) Les plantes utiles du Gabon. Paul Lechevalier, Paris, pp 19–132Google Scholar
  36. Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non-narcotic analgesics. Br J Pharmacol Chemother 22:246–253PubMedGoogle Scholar
  37. Zimmermann M (1983) Principle guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Lucky Lebgosi Nwidu
    • 1
    • 2
  • Paul Alozie Nwafor
    • 3
  • Viviane Cândida da Silva
    • 4
  • Clenilson Martins Rodrigues
    • 4
  • Lourdes Campaner dos Santos
    • 4
  • Wagner Vilegas
    • 4
  • Ricardo Luiz Nunes-de-Souza
    • 5
  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacyNiger Delta UniversityWilberforce IslandNigeria
  2. 2.Port HarcourtNigeria
  3. 3.Department of Pharmacology and Toxicology, Faculty of PharmacyUniversity of UyoUyoNigeria
  4. 4.Departamento de Química Orgânica, Instituto de QuímicaUNESP, Univ. Estadual PaulistaAraraquaraBrazil
  5. 5.Lab. Farmacologia, Faculdade de Ciencias, Farmaceuticas, UNESP, Univ. Estadual PaulistaAraraquaraBrazil

Personalised recommendations