Instruments and Experimental Techniques

, Volume 48, Issue 4, pp 503–508 | Cite as

Measuring and Visualizing Strong Magnetic Fields by Means of Indicators Based on Garnet Ferrite Films

  • E. I. Il’yashenko
  • L. Z. Lubyanyi
  • V. N. Samofalov
General Experimental Techniques


A method for measuring by means of indicators based on garnet ferrite films the strong magnetic stray fields having intensities of 5–10 kOe that arise in systems of magnets with enormous magnetic anisotropy is described. The method is based on the phase transition from a strip domain structure into a uniformly magnetized state that takes place in garnet ferrite films in magnetic fields with intensities approaching the values of their anisotropy fields. It is shown that, by using indicators with various anisotropy field values, it is possible to obtain a fairly complete pattern of the stray fields localized in a narrow region over the magnets. The resolution limit in the localization region of a strong field is comparable to the width of the strip domains in the indicator and is 1–4 µm. The limiting value of the measured field intensity is equal to the anisotropy field of the indicator material.


Anisotropy Phase Transition Ferrite Domain Structure Measured Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloch, F., IEEE Trans. Magn., 1988, vol. 34, no.1, p. 2465.CrossRefGoogle Scholar
  2. 2.
    Halbach, K., J. Appl. Phys., 1985, vol. 57, p. 3605.CrossRefGoogle Scholar
  3. 3.
    Leupold, H.A. and McLane, G.F., J. Appl. Phys., 1994, vol. 76, p. 6253.CrossRefGoogle Scholar
  4. 4.
    Samofalov, V.N., Ravlik, A.G., Belozorov, D.P., and Avramenko, B.A., Fiz. Met. Metalloved., 2004, vol. 97, no.3, p. 15 [Phys. Met. Metallugr. (Engl. Transl.), 2004, vol. 97, no. 3, p. 235].Google Scholar
  5. 5.
    Samofalov, V.N., Ravlik, A.G., Belozorov, D.P., and Avramenko, B.A., J. Magn. Magn. Mater., 2004, vol. 281, no.2–3, p. 326.CrossRefGoogle Scholar
  6. 6.
    Samofalov, V.N., Il’yashenko, E.I., Ramstad, A., et al., Abstracts of Papers, Proc. 4th Int. Workshop “Materials for Electrotechnics”, Bucuresti: Printech, 2004, p. 43; Samofalov V.N., Il’yashenko E.I., Ramstad A., et al., Adv. Mater. Opt. Electron., 2004, vol. 6, no. 3, p. 911.Google Scholar
  7. 7.
    Samofalov, V.N., Il’yashenko, E.I., Ramstad, A., and Lubyanyi, L.Z., Abstracts of Papers, Trudy 19-oi mezhdunarodnoi shkoly-seminara “Novye magnitnye materialy mikroelektroniki” (Proc. 19th Int. School-Seminar “New Magnetic Materials for Microelectronics”), Moscow: Mosc. Gos. Univ., 2004, p. 147.Google Scholar
  8. 8.
    Il’yashenko, E.I. and Matveyev, S.N., Phys. Status Solidi A, 1976, vol. 36, p. K1–K6.Google Scholar
  9. 9.
    Soohoo, R., Magnetic Thin Films, New York: Harper & Row, 1965, p. 44. Translated under the title Magnitnye tonkie plenki, Moscow: Mir, 1967, p. 45.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. I. Il’yashenko
    • 1
  • L. Z. Lubyanyi
    • 2
  • V. N. Samofalov
    • 2
  1. 1.Moscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Kharkov Polytechnical InstituteNational Technical UniversityKharkovUkraine

Personalised recommendations