Experimental Verification of Effect of Different Fluid Properties on the Vibration Response of a Cantilever Rotor

The current analysis is an effort to obtain the vibration characteristics of a cantilever rotor shaft with an extra mass added at the free end of the rotor shaft partially immersed in a viscous medium. This work is concentrated on the theoretical analysis of the natural frequency and amplitude of the spinning cantilever rotor shaft with addition mass using the influence coefficient method. The influence of fluid forces is studied using the Navier–Stokes equation. The gap ratio (ratio of the fluid-filled container radius to the shaft radius) and viscosity of the fluid are taken as the main variable parameters.MATLAB programming is used to obtain vibration behavior from the theoretical expressions. The obtained result from the numerical analysis is validated by the comparison of the results of experimental analysis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Wauer, “On the dynamics of cracked rotors: A literature survey,” Appl. Mech. Rev., 43, No. 1, 13–17 (1990).

    ADS  Article  Google Scholar 

  2. 2.

    S. G. Kadyrov, J. Wauer, and S. V. Sorokin, “A potential technique in the theory of interaction between a structure and a viscous, compressible fluid,” Arch. Appl. Mech., 71, 405–417 (2001).

    ADS  Article  Google Scholar 

  3. 3.

    W. H. Walston, W. F. Ames, and L. G. Clark, “Dynamic stability of rotating shafts in viscous fluids,” ASME J. Appl. Mech., 31, No. 2, 292–299 (1964).

    Article  Google Scholar 

  4. 4.

    C. A. Papadopoulos and A. D. Dimarogonas, “Coupled longitudinal and bending vibrations of a rotating shaft with an open crack,” J. Sound Vibr., 117, No. 1, 81–93 (1987).

    ADS  Article  Google Scholar 

  5. 5.

    W. M. Ostachowicz and M. Krawczuk, “Coupled torsional and bending vibrations of a rotor with an open crack,” Arch. Appl. Mech., 62, No. 3, 191–201 (1996).

    Google Scholar 

  6. 6.

    R. Gasch, “A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack,” J. Sound Vibr., 160, No. 2, 313–332 (1993).

    ADS  Article  Google Scholar 

  7. 7.

    R. J. Fritz, “The effects of an annular fluid on the vibrations of a long rotor. Part 1: Theory,” J. Basic Eng., 92, No. 4, 923–930 (1970).

    Article  Google Scholar 

  8. 8.

    L. Cho-Chung, L. Ching-Chao, T. Yuh-Shiou, and L. Wen-Hao, “The free vibration analysis of submerged cantilever plates,” Ocean Eng., 28, No. 9, 1225–1245 (2001).

    Article  Google Scholar 

  9. 9.

    J. C. Sol, “Vibration detection of a transverse crack in a rotating machine shaft,” Mecanique Materiaux Electricite, 371, 404–409 (1980).

    ADS  Google Scholar 

  10. 10.

    C. Brennen, “On the flow in an annulus surrounding a whirling cylinder,” J. Fluid Mech., 75, No. 1, 173–191 (1976).

    ADS  Article  Google Scholar 

  11. 11.

    W. H. Walston, W. F. Ames, and L. G. Clark, “Dynamic stability of rotating shafts in viscous fluids,” ASME, J. Appl. Mech., 31, No. 2, 292–299 (1964).

    Article  Google Scholar 

  12. 12.

    J. D. Achenbach and J. Qu, “Resonant vibrations of a submerged,” J. Sound Vibr., 105, No. 2, 185–198 (1986).

    ADS  Article  Google Scholar 

  13. 13.

    Q. Han and F. Chu, “Dynamic instability and steady-state response of an elliptical cracked shaft,” Arch. Appl. Mech., 82, 709–722 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    S. Xiaohui, L. Wenxiu, and C. Fulei, “Dynamic analysis of rectangular plates with a single side crack and in contact with water on one side based on the Rayleigh–Ritz method,” J. Fluids Struct., 34, 90–104 (2012).

    Article  Google Scholar 

  15. 15.

    A. Hossain, L. Humphrey, and A. Mian, “Prediction of the dynamic response of a mini-cantilever beam partially submerged in viscous media using finite element method,” Finite Elem. Anal. Des., 48, 1339–1345 (2012).

    Article  Google Scholar 

  16. 16.

    M. Shahgholi, S. E. Khadem, and S. Bab, “Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions,” Mech. Mach. Theor., 82, 128–140 (2014).

    Article  Google Scholar 

  17. 17.

    N. P. Catherine, A. I. Matteo, and P. Maurizio, “Finite amplitude vibrations of cantilevers of rectangular cross sections in viscous fluids,” J. Fluids Struct., 40, 52–69 (2013).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. R. Yadao.

Additional information

Published in Prikladnaya Mekhanika, Vol. 56, No. 5, pp. 136–144, September–October 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadao, A.R. Experimental Verification of Effect of Different Fluid Properties on the Vibration Response of a Cantilever Rotor. Int Appl Mech 56, 643–651 (2020). https://doi.org/10.1007/s10778-020-01041-7

Download citation

Keywords

  • cantilever rotor shaft
  • dynamic response
  • Navier-Stokes equation
  • influence coefficient method