Inversion Symmetry of the Solutions of Boundary-Value Problems of Elasticity for a Half-Space

The inversion symmetry of the components of the displacement vector and stress tensor in the solution of the first boundary-value problem of elasticity for a half-space is studied. The case where one component of loading on the half-space boundary has inversion symmetry and the other two components are equal to zero is considered. Inversion symmetry is also studied for the mixed problem where normal forces act and tangential forces are equal to zero one part of the half-space boundary, while the conditions of smooth contact are prescribed on the other part, and the problem of the torsion of an elastic half-space with tangential stresses given on its boundary.

This is a preview of subscription content, access via your institution.


  1. 1.

    Yu. A. Antipov, “Exact solution of the problem of indentation of a ring punch into a half-space,” Dokl. AN USSR, Ser. A: Fiz.-Mat. Tekhn. Nauki, No. 7, 29–33 (1987).

  2. 2.

    L. A. Galin, Contact Problems of Elasticity [in Russian], Gostekhizdat, Moscow (1953).

    Google Scholar 

  3. 3.

    S. D. Klyachko, “Use of inversion transformation for modeling in certain problems of the theory of elasticity and plasticity,” J. Appl. Mech. Tech. Phys., 13, No. 2, 250–252 (1972).

    ADS  Article  Google Scholar 

  4. 4.

    M. A. Lavrent’ev and B. V. Shabat, Methods of Complex-Variable Theory [in Russian], Gostekhizdat, Moscow–Leningrad (1951).

    Google Scholar 

  5. 5.

    A. I. Lurie, Theory of Elasticity, Springer, Berlin (1999).

    Google Scholar 

  6. 6.

    A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge Univ. Press, Cambridge (1959).

    Google Scholar 

  7. 7.

    V. N. Maksimovich and G. V. Plyatsko, “Application of the inversion method to determine stresses in inhomogeneous bodies,” Sov. Appl. Mech., 10, No. 10, 1095–1100 (1974).

    ADS  Article  Google Scholar 

  8. 8.

    L. M. Milne-Thomson, Theoretical Hydrodynamics, The Macmillan Co., New. York (1960).

    Google Scholar 

  9. 9.

    K. M. Nekislykh and V. I. Ostrik, “Wedging of an elastic wedge,” Visn. Kyivs’kogo Univ. im. T. Shevchenko, Ser.: Fiz.-Mat Nauky, No. 3, 91–96 (2009).

  10. 10.

    W. Nowacki, Theory of Elasticity [in Polish], PWN, Warsaw (1970).

    Google Scholar 

  11. 11.

    N. A. Rostovtsev, “The problem of the torsion of an elastic half-space,” Prikl. Mat. Mekh., 19, 55–60 (1955).

    MathSciNet  MATH  Google Scholar 

  12. 12.

    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Dover, New York (1966).

    Google Scholar 

  13. 13.

    J. H. Michell, “The inversion of plane stress,” Proc. London Math. Soc., 34, 134 (1902).

    MathSciNet  MATH  Google Scholar 

  14. 14.

    J. H. Michell, “The flexure of a circular plate,” Proc. London Math. Soc., 34, 223–238 (1902).

    MathSciNet  MATH  Google Scholar 

  15. 15.

    V. I. Ostrik, “Inversion symmetry of the solutions of basic boundary-value problems of two-dimensional elasticity theory for a wedge,” J. Math. Sci., 247, No. 1, 108–138 (2020).

    MathSciNet  Article  Google Scholar 

  16. 16.

    V. I. Ostryk and O. M. Shchokotova, “Sliding contact of a punch with elastic wedge,” Mater. Sci., 47, No. 4, 514–526 (2012).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. I. Ostrik.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 56, No. 5, pp. 122–135, September–October 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ostrik, V.I. Inversion Symmetry of the Solutions of Boundary-Value Problems of Elasticity for a Half-Space. Int Appl Mech 56, 628–642 (2020).

Download citation


  • inversion
  • elastic half-space
  • Boussinesq and Cerruti problems
  • torsion
  • potentials