Advertisement

International Applied Mechanics

, Volume 54, Issue 1, pp 3–33 | Cite as

For the 100TH Anniversary of the S. P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine (NASU)

  • A. N. Guz
Article

This article is devoted to the forthcoming (11/30/2018) 100th anniversary of the S. P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine (NASU). The recognition of the scientific results of the S. P. Timoshenko Institute of Mechanics by the world’s scientific community is discussed. The historical stages of the institute development are considered. The staff, new books (monographs, textbooks, and tutorials), training achievements (new Doctors of Sciences and PhD), publications in scientific journals, etc. are briefly reviewed. The main scientific awards of the S. P. Timoshenko Institute of Mechanics are listed.

Keywords

S. P. Timoshenko Institute of Mechanics centenary information on results 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogolyubov, Collected Works [in Russian], in 12 vols., Nauka, Moscow (2005–2009).Google Scholar
  2. 2.
    N. N. Bogolyubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1955).Google Scholar
  3. 3.
    D. V. Vainberg, Stress State of Compound Disks and Plates [in Russian], Izd. AN USSR, Kyiv (1952).Google Scholar
  4. 4.
    A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], in 2 vols., Naukova Dumka, Kyiv (1986). Vol. 1. General Principles. Vol. 2. Laws of Wave Propagation.Google Scholar
  5. 5.
    A. N. Guz, Fundamentals of the Fracture Mechanics of Compressed Composites [in Russian], in 2 vols., Litera, Kyiv (2008). Vol. 1. Fracture in the Structure of Material. Vol. 2. Related Fracture Mechanisms.Google Scholar
  6. 6.
    A. N. Guz, “On the activity of the S. P. Timoshenko Institute of Mechanics in 1991–2011,” Int. Appl. Mech., 47, No. 6, 607–626 (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. N. Guz, “Recognition of the achievements of the S. P. Timoshenko Institute of Mechanics by the world’s scientific community,” Int. Appl. Mech., 51, No. 1, 1–11 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], in two parts, LAP LAMBERT Academic Publishing, Saarbrucken (2016). Part 1. General Principles. Waves in Infinite Bodies and Surface Waves. Part 2. Waves in Semibounded Bodies.Google Scholar
  9. 9.
    A. N. Guz and Yu. N. Nemish, “The first director of the S. P. Timoshenko Institute of Mechanics of the Academy of Sciences of Ukraine,” Int. Appl. Mech., 34, No. 10, 931–934 (1998).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    A. N. Guz (ed.), Institute of Mechanics [in Russian], Naukova Dumka, Kyiv (1978).Google Scholar
  11. 11.
    A. N. Guz (ed.), Institute of Mechanics (1919–1989) [in Russian], Naukova Dumka, Kyiv (1989).Google Scholar
  12. 12.
    A. N. Guz (ed.), S. P. Timoshenko Institute of Mechanics [in Russian], ASK, Kyiv (1998).Google Scholar
  13. 13.
    A. N. Guz (ed.), I. S. Chernyshenko, and J. J. Rushchitsky, S. P. Timoshenko Institute of Mechanics of the NAS of Ukraine (1918–2008): 90th Anniversary (History, Structure, and Information Aspects) [in Russian], Litera, Kyiv (2008).Google Scholar
  14. 14.
    N. A. Kil’chevskii, A Course of Theoretical Mechanics [in Russian], in 2 vols, Nauka, Moscow (1977). Vol. 1. Kinematics, Statics, Dynamics of a Point. Vol. 2. Dynamics of a System. Analytical Mechanics. Elements of Potential Theory, Continuum Mechanics, Special and General Relativity Theory.Google Scholar
  15. 15.
    N. V. Kornoukhov, Strength and Stability of Rod Systems [in Russian], Stroiizdat, Moscow (1949).Google Scholar
  16. 16.
    N. M. Krylov and N. N. Bogolyubov, Basic Problems in Nonlinear Mechanics [in Russian], GTTI, Moscow–Leningrad (1932).Google Scholar
  17. 17.
    N. M. Krylov and N. N. Bogolyubov, Vibrations of Synchronous Machines. 2. Stability of the Parallel Operation of n Synchronous Machines [in Russian], Energovydav, Kharkov–Kiev (1932).Google Scholar
  18. 18.
    N. M. Krylov and N. N. Bogolyubov, Research into the Directional Stability of Airplanes, Gosaviaavtotraktorizdat, Moscow–Leningrad (1932).Google Scholar
  19. 19.
    N. M. Krylov and N. N. Bogolyubov, New Methods for Solving Some Mathematical Problems in Engineering [in Russian], Budvydav, Kharkov–Kiev (1933).Google Scholar
  20. 20.
    N. M. Krylov and N. N. Bogolyubov, New Methods of Nonlinear Mechanics and Their Use to Study the Performance of Electronic Generators, Part 1, GTTI, Moscow–Leningrad (1934).Google Scholar
  21. 21.
    N. M. Krylov and N. N. Bogolyubov, On Some Formal Expansions in Nonlinear Mechanics [in Russian], VUAN, Kyiv (1934).Google Scholar
  22. 22.
    N. M. Krylov and N. N. Bogolyubov, Application of Methods of Nonlinear Mechanics to the Theory of Stationary Vibrations, VUAN, Kyiv (1934).Google Scholar
  23. 23.
    N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (Approximate and Asymptotic Methods in Nonlinear Mechanics) [in Russian], Izd. AN USSR, Kyiv (1937).Google Scholar
  24. 24.
    N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics: Approximate and Asymptotic Methods in Nonlinear Mechanics [in Russian], RKhD, Moscow–Izhevsk (2004).Google Scholar
  25. 25.
    N. M. Krylov and N. N. Bogolyubov, Nonlinear Mechanics: 1932–1940 [in Russian], Nauka, Moscow (2005).Google Scholar
  26. 26.
    A. A. Martynyuk, “On the occasion of the 100th anniversary of the birth of Academician Yu. A. Mitropolsky (1917–2017),” Int. Appl. Mech., 53, No. 1, 1–5 (2017).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. A. Martynyuk, E. F. Mishchenko, A. M. Samoilenko, and A. D. Sukhanov, “Academician Nikolai Nikolaevich Bogolyubov (for the 100th anniversary of his birth),” Int. Appl. Mech., 45, No. 7, 693–698 (2009).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Methods of Shell Design [in Russian], in 5 vols., Naukova Dumka, Kyiv (1980). Vol. 1. A. N. Guz, I. S. Chernyshenko, Val. N. Chekhov, Vick. N. Chekhov, and K. I. Shnerenko, Theory of Thin Shells Weakened by Holes (1980). Vol. 2. I. Ya. Amiro and V. A. Zarutskii, Theory of Ribbed Shells (1980). Vol. 3. Yu. N. Shevchenko and I. V. Prokhorenko, Theory of Elastoplastic Shells under Nonisothermal Loading (1981). Vol. 4. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Variable Stiffness (1981). Vol. 5. A. N. Guz and V. D. Kubenko, Theory of Nonstationary Aerohydroelasticity of Shells (1982).Google Scholar
  29. 29.
    A. N. Guz (ed.), Mechanics of Composite Materials and Structural Members [in Russian], in 3 vols., Naukova Dumka, Kyiv (1982–1983). Vol. 1. L. P. Khoroshun (ed.), Material Mechanics (1982). Vol. 2. Ya. M. Grigorenko (ed.), Mechanics of Structural Members (1983). Vol. 3. Applied Research (1983).Google Scholar
  30. 30.
    A. N. Guz (ed.), Spatial Problems in the Theory of Elasticity and Plasticity [in Russian], in 6 vols., Naukova Dumka, Kyiv (1984–1986). Vol. 1. Yu. N. Podil’chuk, Boundary-Value Problems of Statics of Elastic Bodies (1984). Vol. 2. A. N. Guz and Yu. N. Nemish, Statics of Noncanonical Elastic Bodies (1984). Vol. 3. V. T. Grinchenko and A. F. Ulitko, Equilibrium of Canonical Elastic Bodies (1985). Vol. 4. A. N. Guz and I. Yu. Babich, Three-Dimensional Theory of Stability of Deformable Bodies (1985). Vol. 5. V. T. Golovchan, V. D. Kubenko, N. A. Shul’ga, A. N. Guz, and V. T. Grinchenko, Dynamics of Elastic Bodies (1986). Vol. 6. Yu. N. Shevchenko, Numerical Methods for Solving Applied Problems (1986).Google Scholar
  31. 31.
    A. N. Guz (ed.), Mechanics of Coupled Fields in Structural Members [in Russian], in 5 vols, Naukova Dumka, Kyiv (1987–1989). Vol. 1. I. A. Motovilovets and V. I. Kozlov, Thermoelasticity (1987). Vol. 2. Yu. N. Shevchenko and V. G. Savchenko, Thermoviscoplasticity (1987). Vol. 3. A. N. Guz and F. G. Makhort, Acoustoelectromagnetoelasticity (1988). Vol. 4. V. G. Karnaukhov and I. F. Kirichok, Electrothermoviscoelasticity (1988). Vol. 5. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity (1989).Google Scholar
  32. 32.
    A. N. Guz (ed.), Nonclassical Problems of Fracture Mechanics [in Russian], in four vols., five books, Naukova Dumka, Kyiv (1990–1993). Vol. 1. A. A. Kaminsky, Fracture of Viscoelastic Bodies with Cracks (1990). Vol. 2. A. N. Guz, Brittle Fracture of Materials with Prestresses (1991). Vol. 3. A. A. Kaminsky and D. A. Gavrilov, Delayed Fracture of Polymeric and Composite Materials with Cracks (1992). Vol. 4, book 1, A. N. Guz, M. Sh. Dyshel’, and V. M. Nazarenko, Fracture and Stability of Materials with Cracks (1992). Vol. 4, book 2, A. N. Guz and V. V. Zozulya, Brittle Fracture of Materials under Dynamic Loads (1993).Google Scholar
  33. 33.
    A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], in 12 vols, Naukova Dumka (Vols. 1–4), A.S.K. (Vols. 5–12), Kyiv (1993–2003). Vol. 1. V. T. Golovchan (ed.), Statics of Materials (1993). Vol. 2. N. A. Shul’ga (ed.), Dynamics and Stability of Materials (1993). Vol. 3. L. P. Khoroshun (ed.), Statistical Mechanics and Effective Properties of Materials (1993). Vol. 4. A. N. Guz and S. D. Akbarov (eds.), Mechanics of Materials with Curved Structures (1995). Vol. 5. A. A. Kaminsky (ed.), Fracture Mechanics (1996). Vol. 6. N. A. Shul’ga and V. T. Tomashevskii (eds.), Process-Induced Stresses and Strains in Materials (1997). Vol. 7. A. N. Guz, A. S. Kosmodamianskii, and V. P. Shevchenko (eds.), Stress Concentration (1998). Vol. 8. Ya. M. Grigorenko, Statics of Structural Members (1999). Vol. 9. V. D. Kubenko (ed.), Dynamics of Structural Members (1999). Vol. 10. I. Yu. Babich (ed.), Stability of Structural Members (2001). Vol. 11. Ya. M. Grigorenko and Yu. N. Shevchenko (eds.), Numerical Methods (2002). Vol. 12. A. N. Guz and L. P. Khoroshun (eds.), Applied Research (2003).Google Scholar
  34. 34.
    A. N. Sisakyan, “The life and work of N. N. Bogolyubov,” Phys. Part. Nucl., 41, No. 6, 828–831 (2010).CrossRefGoogle Scholar
  35. 35.
    A. N. Guz (ed.), Modern Problems of Mechanics: on the Occasion of the 100th Anniversary of the National Academy of Sciences of Ukraine and S. P. Timoshenko Institute of Mechanics [in Russian], in 3 vols., Litera, Kyiv (2016–2018).Google Scholar
  36. 36.
    S. P. Timoshenko, Resistance of Materials [in Russian], part 1, Gosstroiizdat, Moscow (1931).Google Scholar
  37. 37.
    S. P. Timoshenko, Statics of Structures [in Russian], Gosstroiizdat, Moscow (1936).Google Scholar
  38. 38.
    S. P. Timoshenko, Stability of Elastic Systems [in Russian], Gostekhizdat, Moscow (1946).Google Scholar
  39. 39.
    S. P. Timoshenko, Theory of Elasticity [in Russian], ONTI, Moscow–Leningrad (1937).Google Scholar
  40. 40.
    S. P. Timoshenko, Resistance of Materials [in Russian], GITTL, Moscow (1946).Google Scholar
  41. 41.
    S. P. Timoshenko, Plates and Shells [in Russian], Gostekhizdat, Moscow–Leningrad (1948).Google Scholar
  42. 42.
    S. P. Timoshenko, Vibrations in Engineering [in Russian], Nauka, Moscow (1967).zbMATHGoogle Scholar
  43. 43.
    S. P. Timoshenko, Stability of Rods, Plates, and Shells [in Russian], Nauka, Moscow (1971).zbMATHGoogle Scholar
  44. 44.
    S. P. Timoshenko, A Course in the Theory of Elasticity [in Russian], Naukova Dumka, Kyiv (1972).Google Scholar
  45. 45.
    S. P. Timoshenko, Memoirs [in Russian], Naukova Dumka, Kyiv (1993).Google Scholar
  46. 46.
    A. N. Guz (ed.), Advances in Mechanics [in Russian], A.S.K. (Vols. 1–3), Litera (Vols. 4–6), Kyiv (2005–2011).Google Scholar
  47. 47.
    S. D. Akbarov and A. N. Guz, “Mechanics of curved composites and some related problems for structural members,” Mech. Adv. Mater. Struct., 11, No. 6, Part II, 445–516 (2004).Google Scholar
  48. 48.
    R. B. Hetnarski (ed.), Encyclopedia of Thermal Stresses, in 11 vols., Springer, New York–Dordrecht (2014). Vol. 1, A–B, pp. 1–506. Vol. 2, C–D, pp. 507–1084. Vol. 3, E, pp. 1085–1560. Vol. 4, F–G, pp. 1561–2107. Vol. 5, H–K, pp. 2108–2626. Vol. 6. L–M, pp. 2627–3291. Vol. 7, N–P, pp. 3292–4082. Vol. 8, Q–S, pp. 4083–4784. Vol. 9, T – Thermal Stresses, pp. 4785–5232. Vol. 10, T – Thermal Stresses – Thermoelastic, pp. 5233–5834. Vol. 11, Thermoelasticity – Z, pp. 5835–6643.Google Scholar
  49. 49.
    G. P. Cherepanov (ed.), Fracture. A Topical Encyclopedia of Current Knowledge, Krieger Malabar, Florida (1998).Google Scholar
  50. 50.
    Ya. M. Grigorenko and A. Ya. Grigorenko, Numerical Approaches to Solving Thermostress Problems for Inhomogeneous Anisotropic Shells Using Various Models, in: R. B. Hetnarski (ed.), Encyclopedia of Thermal Stresses, in 11 vols., Springer, New York–Dordrecht (2014), 7, N–P, pp. 3292–4082, 3412–3419.Google Scholar
  51. 51.
    A. Ya. Grigorenko, W. H. Muller, Ya. M. Grigorenko, and G. G. Vlaikov, in 3 vols., Springer (2016). Vol. I. Recent Developments in Anisotropic Heterogeneous Shell Theory. Vol. IIA. Recent Developments in Anisotropic Heterogeneous Shell Theory. Applications of Refined and Three-Dimensional Theory. Vol. IIB. Recent Developments in Anisotropic Heterogeneous Shell Theory. Applications of Refined and Three-Dimensional Theory.Google Scholar
  52. 52.
    A. N. Guz, Some Modern Problems of Physical Mechanics of Fracture, in: G. P. Cherepanov (ed.), Fracture. A Topical Encyclopedia of Current Knowledge, Krieger, Malabar, Florida (1998), pp. 709–720.Google Scholar
  53. 53.
    A. N. Guz, “On study of nonclassical problems of fracture and failure mechanics and related mechanisms,” ANNALS of the European Academy of Sciences, 35–68 (2006–2007).Google Scholar
  54. 54.
    A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, June, 1–15 (2011).Google Scholar
  55. 55.
    A. N. Guz, S. Yu. Babich, and V. B. Rudnitsky, “Contact problems for elastic bodies with initial stresse: Focus on Ukrainian research,” Appl. Mech. Reviews, 51, No. 5, 343–371 (1998).ADSCrossRefGoogle Scholar
  56. 56.
    A. N. Guz and J. J. Rushchitsky, “Some fundamental aspects of mechanics of nanocomposite materials and structural members,” J. Nanotechnology. Nanocomposites, Article ID641581, 1–16 (2013).Google Scholar
  57. 57.
    A. N. Guz and V. V. Zozulya, “Fracture dynamics with allowance for a crack edges contact interaction,” Int. J. Nonlin. Sci. Numer. Simul., 2, No. 3, 173–233 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    I. A. Guz, J. J. Rushchitsky, and A. N. Guz, “Mechanical models for nanomaterials,” in: Vol. 1. Handbook of Nanophysics. Principles and Methods of seven-volume series K. D. Sattler (ed.), Handbook of Nanophysics, CRC Press, Taylor and Francis Group, Boca Raton–London (2011), pp. 24.1–24.12.Google Scholar
  59. 59.
    K. D. Sattler (ed.), Handbook of Nanophysics, in 7 vols., CRC Press, Taylor and Francis Group, Boca Raton–London (2011). Vol. 1. Handbook of Nanophysics. Principles and Methods. Vol. 2. Handbook of Nanophysics. Clusters and Fullerenes. Vol. 3. Handbook of Nanophysics. Nanoparticles and Quantum Dots. Vol. 4. Handbook of Nanophysics. Nanotubes and Nanowires. Vol. 5. Handbook of Nanophysics. Functional Nanomaterials. Vol. 6. Handbook of Nanophysics. Nanoelectronics and Nanophotonics. Vol. 7. Handbook of Nanophysics. Nanomedicine and Nanorobotics.Google Scholar
  60. 60.
    A. A. Kaminsky, “Subcritical crack growth in polymer composite materials,” in: G. P. Cherepanov, Fracture. A Topical Encyclopedia of Current Knowledge, Krieger, Malabar, Florida (1998), pp. 758–765.Google Scholar
  61. 61.
    V. G. Karnaukhov, “Thermomechanics of coupled fields in passive and piezoactive inelastic bodies under harmonic deformations,” J. Thermal Stresses, 28, No. 6–7, 783–815 (2005).CrossRefGoogle Scholar
  62. 62.
    V. G. Karnaukhov, “Piezothermo-inelastic behavior of structural elements: Vibrations and dissipative heating,” in: R. B. Hetnarski (ed.), Encyclopedia of Thermal Stresses, in 11 vols., Springer, New York–Dordrecht (2014), 7, N–P, pp. 3292–4082, 3910–3919.Google Scholar
  63. 63.
    V. G. Karnaukhov, “The forced jarmonic vibrations and dissipative heating of nonelastic bodies,” in: R. B. Hetnarski (ed.), Encyclopedia of Thermal Stresses, in 11 vols., Springer, New York–Dordrecht (2014), 4, F–G, pp. 1561–2107, 1711–1722.Google Scholar
  64. 64.
    N. M. Krylov and N. N. Bogolyubov, Methodes Nouvelles Pour la Solution de Quelques Problemes Mathematiques se Rencontrant das la Science des Constructions, Kiev (1931).Google Scholar
  65. 65.
    N. M. Krylov and N. N. Bogolyubov, L’application des Méthods de la Méchanique Non-linéaire a la Théorie des Perturbations des Systémes Canoniques, Acad. Sci. d’Ukraine, Kiev (1934). (Acad. Sci. d’Ukraine Inst. de mécanique des constructions. Chaire de phys. mat.; No. 4).Google Scholar
  66. 66.
    N. M. Krylov and N. N. Bogolyubov, Méthodes Approchées de la Mécanique non Linéaire dans Leur Application à L’étude de la Perturbation des Mouvements Périodiques et de Divers Phénomènes de Resonance s’y Rapportant, Publ. Acad. Sci. d’Ukraine, Kiev (1935).Google Scholar
  67. 67.
    N. M. Krylov and N. N. Bogolyubov, Introduction to Non-linear Mechanics by N. Kryloff and N. Bogoluboff. A Free Translation by Solomon Lefschets of Excerpts from two Russian Monographs, Princeton Univ. Press, London (1943).Google Scholar
  68. 68.
    N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics, Princeton Univ. Press, Repr. Princeton (1947).Google Scholar
  69. 69.
    A. A. Martynyuk, “A survey of some classical and modern developments of stability theory,” Nonlinear Anal., 40, 483–496 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    A. A. Martynyuk, “Matrix Liapunov’s functions method and stability analysis of continuous systems,” CUBO. A Math. J., 6, No. 4, 209–257 (2004).MathSciNetzbMATHGoogle Scholar
  71. 71.
    A. N. Guz (ed.), “Micromechanics of composite materials: Focus on Ukrainian research,” Appl. Mech. Reviews, 45, No. 2, 13–101 (1992). A. N. Guz, Introduction. pp. 14–15. About the authors, p. 16. S. D. Akbarov and A. N. Guz, Statics of Laminated and Fibrous Composites with Bent, pp. 17–34. A. N. Guz and N. A. Shulga, Dynamics of Laminated and Fibrous Composites, pp. 35–60. I. Yu. Babich and A. N. Guz, Stability of Fibrous Composites, pp. 61–80. A. N. Guz and Vic. N. Chekhov, Stability of Laminated Composites, pp. 81–101.Google Scholar
  72. 72.
    Pure and Applied Mathematics. Series of Monographs and Textbooks, in 247 vols., Marcel Dekker, New York, Basel, Hong Kong (1970–2002). V. 214. A. A. Martynyuk, Stability by Liapunov’s Matrix Function Method with Applications (1998). V. 246. A. A. Martynyuk, Qualitative Methods in Nonlinear Dynamics. Novel Approaches to Liapunov’s Matrix Functions (2002).Google Scholar
  73. 73.
    J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Reviews, 52, No. 2, 35–74 (1999).ADSCrossRefGoogle Scholar
  74. 74.
    Stability and Control: Theory, Methods and Application, Series of Monographs, Gordon and Breach Publishers, Amsterdam. V. 2. A. A. Martynyuk, Stability Analysis: Nonlinear Mechanics Equations (1995). V. 3. J. Kato, A. A. Martynyuk, and A. A. Shestakov, Stability of Motion of Nonautonomous System (Method of Limiting Equations) (1996).Google Scholar
  75. 75.
    Stability, Oscillations and Optimization of Systems, Series of Monographs, Cambridge Scientific Publishers, Cambridge. V. 1. A. A. Martynyuk, Stability of Motion. The Role of Multicomponent Liapunov’s Functions (2007). V. 8. A. A. Martynyuk and V. G. Miladzhanov, Stability Analysis of Nonlinear Systems under Structural Perturbations (2015).Google Scholar
  76. 76.
    P. A. Steblyanko and Yu. N. Shevchenko, Computational Methods in Stationary and Nonstationary Thermal–Plasticity Problems, in: R. B. Hetnarski (ed.), Encyclopedia of Thermall Stresses, in 11 vols., Springer, New York–Dordrecht (2014), 2, C–D, pp. 507–1084, 623–630.Google Scholar
  77. 77.
    S. P. Timoshenko, Applied Elasticity, Westinhouse Mechanical Night School Press, East Pittsburg (1925).Google Scholar
  78. 78.
    S. P. Timoshenko, Strength of Materials, Van Nostrand, Princeton (1930).zbMATHGoogle Scholar
  79. 79.
    S. P. Timoshenko, Theory of Elasticity, McGraw-Hill Book Company Inc., New York (1933).zbMATHGoogle Scholar
  80. 80.
    S. P. Timoshenko, Elements of Strength of Materials, Part I, II, Van Nostrand, Princeton (1935).Google Scholar
  81. 81.
    S. P. Timoshenko, Theory of Elastic Stability, McGraw-Hill Book Company Inc., New York (1937).Google Scholar
  82. 82.
    S. P. Timoshenko, Theory of Plates and Shells, McGraw-Hill Book Company Inc., New York (1940).zbMATHGoogle Scholar
  83. 83.
    S. P. Timoshenko, Theory of Structures, McGraw-Hill Book Company Inc., New York (1945).zbMATHGoogle Scholar
  84. 84.
    S. P. Timoshenko, Advanced Dynamics, McGraw-Hill Book Company Inc., New York (1948).zbMATHGoogle Scholar
  85. 85.
    S. P. Timoshenko, Theory of Elasticity, McGraw-Hill Book Company Inc., New York (1951).zbMATHGoogle Scholar
  86. 86.
    S. P. Timoshenko, History of Strength of Materials, McGraw-Hill Book Company Inc., New York (1953).Google Scholar
  87. 87.
    S. P. Timoshenko, Collected Papers, McGraw-Hill Book Company Inc., New York (1954).zbMATHGoogle Scholar
  88. 88.
    S. P. Timoshenko, Theory of Plates and Shells, McGraw-Hill Book Company Inc., New York (1959).zbMATHGoogle Scholar
  89. 89.
    S. P. Timoshenko, Engineering Education in Russia, McGraw-Hill Book Company Inc., New York (1959).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations