International Applied Mechanics

, Volume 52, Issue 4, pp 432–436 | Cite as

Stability and Speed Control of a Series-Wound DC Motor

  • A. S. Khoroshun

A speed control for a series-wound DC motor is proposed. It is shown that steady-state rotation is stabile and robust. Stability is analyzed using a quadratic Lyapunov function. Its explicit expression is derived


singularly perturbed system series-wound direct-current motor parametric stability Lyapunov function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Alyab’ev, E. V. Gorchakov, S. I. Osipov, E. E. Ridel’, and V. N. Khlebnikov, Design and Repair of DC Locomotives [in Russian], Transport, Moscow (1977).Google Scholar
  2. 2.
    E. A. Barbashin, Introduction to the Theory of Stability, Wolters-Noordhoff, Groningen (1970).Google Scholar
  3. 3.
    K. I. Shenfer, Dynamos and DC Motors [in Russian], ONTI, Moscow–Leningrad (1937).Google Scholar
  4. 4.
    H.-L. Choi, Y.-S. Shin, and J.-T. Lim, “Control of nonlinear singularly perturbed systems using feedback linearisation,” IEE Proc.-Control Theory Appl., 152, No. 1, 91–94 (2005).CrossRefGoogle Scholar
  5. 5.
    Y. Ikeda, D. D. Ohta, and D. D. Ŝiljak, “Parametric stability,” in: The Ohio State University Joint Conference: (Proceedings of the Univesitá di Genova), Birkhäuser, Boston, Basel, Berlin (1991), pp. 1–20.Google Scholar
  6. 6.
    A. S. Khoroshun, “Using multicomponent Lyapunov functions to analyze the absolute parametric stability of singularly perturbed uncertain mechanical systems,” Int. Appl. Mech., 50, No. 2, 206–221 (2014).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    B. I. Konosevich, “Estimating the error of an asymptotic solution describing the angular oscillations of the axis of symmetry of a rotating rigid body,” Int. Appl. Mech., 50, No. 4, 446–458 (2014).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    V. B. Larin and A. A. Tunik, “On inertial-navigation system without angular-rate sensors,” Int. Appl. Mech., 49, No. 4, 488–499 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    W. Leonhard, Control of Electrical Drives, Springer-Verlag, Berlin (1996).CrossRefGoogle Scholar
  10. 10.
    S. Mehta and J. Chiasson, “Nonlinear control of a series DC motor: Theory and experiment,” IEEE Trans. Ind. Electron., 45, 134–141 (1998).CrossRefGoogle Scholar
  11. 11.
    T. Wada, M. Ikeda, Y. Ohta, and D. D.Ŝiljak, “Parametric absolute stability of multivariable Lur’e systems: a Popov-type condition and application of polygon interval arithmetic,” Nonlinear Analysis, Theory, Methods, Applications, 30, No. 6, 3713–3723 (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations