International Applied Mechanics

, Volume 52, Issue 2, pp 147–154 | Cite as

Effect of Orthotropy on the Stress State of Longitudinally Corrugated Hollow Cylinders


The effect of orthotropy on the stress state of longitudinally corrugated orthotropic hollow cylinders is analyzed using a three-dimensional problem formulation, the analytical variable-separation and Fourier-series methods, and the numerical discrete-orthogonalization method. The results obtained are presented in the form of graphs of displacement and stress fields


hollow orthotropic cylinders stress state discrete Fourier series discrete orthogonalization method epicycloid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).MathSciNetGoogle Scholar
  2. 2.
    Ya. M. Grigorenko, O. I. Bespalova, and G. P. Urusova, ”Dynamic stability of circumferentially corrugated shells of revolution,” Dop. NAN Ukraine, No. 10, 61–66 (2011).Google Scholar
  3. 3.
    V. V. Novozhilov, ”Fifty years evolution of the complex transformation method in the linear shell theory during 50 years,” in: Theory of Shells and Plates [in Russian], Izd. AN Arm. SSR, Erevan (1964), pp. 107–115.Google Scholar
  4. 4.
    P. W. R. Beaumont, ”On the problems of cracking and the question of structural integrity of engineering composite materials,” Appl. Comp. Mater., 21, No. 1, 5–43 (2014).Google Scholar
  5. 5.
    D. Beben,” Field performance of corrugated steel plate road culvert under normal live-road conditions,” J. Perform. Construct. Facil., 27, No. 6, 807–817 (2013).Google Scholar
  6. 6.
    H. W. Carpenter, R. G. Reid, and R. Paskaramoorthy, ”Extension of the layer removal technique for the measurement of residual stresses in layered anisotropic cylinders,” Int. J. Mech. Mater. Design, 10, No. 3, 269–280 (2014).Google Scholar
  7. 7.
    D. I. Chernopiskii,” On stress–strain state in thick-walled cylindrical shells bounded by corrugated surfaces,” Strength of Materials, 44, No. 1, 40–52 (2012).Google Scholar
  8. 8.
    Ya. M. Grigorenko and A. Ya. Grigorenko, ”Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review),“ Int. Appl. Mech., 49, No. 2, 123–197 (2013).Google Scholar
  9. 9.
    Ya. M. Grigorenko and L. S. Rozhok, ”Applying discrete Fourier series to solve problems of the stress state of hollow noncircular cylinders,“ Int. Appl. Mech., 50, No. 2, 105–127 (2014).Google Scholar
  10. 10.
    Ya. M. Grigorenko and L. S. Rozhok, ”Stress state of hollow cylinders with convex corrugated cross sections,” J. Mathem. Sci., 198, No. 2, 158–165 (2014).Google Scholar
  11. 11.
    R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York (1962).MATHGoogle Scholar
  12. 12.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, MG Graw-Hill, New York (1961).MATHGoogle Scholar
  13. 13.
    S. G. Lekhnitsky, Theory of an Anisotropic Body, MIR Publishers, Moscow (1981).MATHGoogle Scholar
  14. 14.
    V. A. Lubarda, ”On pressurized curvilinearly orthotropic circular disc, cylinder, and sphere made of radially nonuniform material,” J. Elasticity, 109, No. 2, 103–133 (2012).Google Scholar
  15. 15.
    J. H. Marangalou, K. Ito, and B. Rietbergen, ”A novel approach to estimate trabecular bone anisotropy from stress tensors,” Biomech. Model. Mech., 14, No. 1, 39–48 (2015).Google Scholar
  16. 16.
    D. S. Mashat, E. Carrera, A. M. Zenkour, S. A. Al Khateeb, and A. Lamberti, ”Evaluation of refined theories for multilayered shells via axiomatic/asymptotic method,” J. Mech. Sci. Techn., 28, No. 11, 4663–4672 (2014).Google Scholar
  17. 17.
    V. A. Maximyuk, E. A. Storozhuk, and I. S. Chernyshenko, “Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review),” Int. Appl. Mech., 48, No. 6, 613–687 (2012).ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    L. Ma, L. Zhou, S.Wan,” Study of the calculation method of lateral load distribution on a continuous composite box girder bridge with corrugated steel webs,” J. Highway Transp. Res. Develop. (English Edition), 8, No. 2, 42–46 (2014).Google Scholar
  19. 19.
    N. P. Semenyuk, and N. B. Zhukova, ”Stability and postcritical behavior of corrugated cylindrical panels under external pressure,” Int. Appl. Mech., 49, No. 6, 702–714 (2013).Google Scholar
  20. 20.
    K. P. Soldatos, ”Mechanics of cylindrical shells with non-circular cross-section,” Appl. Mech. Rev., 52, No. 8, 237–274 (1999).Google Scholar
  21. 21.
    X. S. Sun, V. B. C. Tan, Y. Chen, L. B. Tan, and T. E. Tay, ”Stress analysis of multi-layered hollow anisotropic composite cylindrical structures using the homogenization method,” Acta Mech., 225, No. 6, 1649–1672 (2014).Google Scholar
  22. 22.
    S. P. Timoshenko, Theory of Elasticity, MG Graw-Hill, New York (1934).MATHGoogle Scholar
  23. 23.
    L. P. Zheleznov, V. V. Kabanov, and D. V. Boiko, ”Nonlinear deformation and stability of discretely reinforced elliptical cylindrical shells under transverse bending and internal pressure,” Rus. Aeronaut., 57, No. 2, 118–126 (2014).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations