Advertisement

International Applied Mechanics

, Volume 52, Issue 1, pp 56–61 | Cite as

Deformation of a Flexible Orthotropic Spherical Shell of Variable Stiffness in a Magnetic Field

  • L. V. Mol’chenko
  • I. I. Loos
  • L. N. Fedorchenko
Article

An axisymmetric nonlinear problem of magnetoelasticity for an orthotropic spherical shell of variable stiffness with orthotropic conductivity is solved. The governing system of nonlinear differential equations that describes the stress–strain state of flexible orthotropic shells of variable stiffness in mechanical and magnetic fields is presented. A numerical example is given. The stress state of an orthotropic spherical shell is analyzed by varying the external current and mechanical force

Keywords

orthotropic spherical shell magnetic field magnetoelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).MATHGoogle Scholar
  2. 2.
    Ya. M. Grigorenko and L. V. Mol’chenko, Fundamentals of the Theory of Plates and Shells [in Ukrainian], Lybid’, Kyiv (1993).Google Scholar
  3. 3.
    Ya. M. Grigorenko and L. V. Mol’chenko, Fundamentals of the Theory of Plates and Shells with Elements of Magnetoelasticity (Textbook) [in Russian], IPTs Kievskii Universitet, Kyiv (2010).Google Scholar
  4. 4.
    Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  5. 5.
    A. F. Ulitko, L. V. Mol’chenko, and V. F. Koval’chuk, Magnetoelasticity under Dynamic Loading [in Ukrainian], Lybid’, Kyiv (1994).Google Scholar
  6. 6.
    W. Flugge, Stresses in Shells, Springer-Verlag, Berlin (1973).CrossRefMATHGoogle Scholar
  7. 7.
    M. A. Hussain and S. L. Pu, “Dinamic stress intensity factors for anunbounded plate having collinear cracks,” Eng. Fact. Mech., 4, No. 4, 865–876 (1972).CrossRefGoogle Scholar
  8. 8.
    H. G. Lippmann, “Principle de la conservation de l’electricite,” Ann. Chim., No. 2, 17–35 (1976).Google Scholar
  9. 9.
    G. A. Maugin, Nonlinear Electromechanical Effects and Applications, World Scientific, Singapore (1985).Google Scholar
  10. 10.
    L. V. Mol’chenko and I. I. Loos, “Influence of conicity on the stress–strain state of a flexible orthotropic conical shell in a nonstationary magnetic field,” Int. Appl. Mech., 46, No. 11, 1261–1267 (2010).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    L. V. Mol’chenko and I. I. Loos, “Influence of the boundary conditions on the stress state of a flexible cylindrical shell of variable stiffness in a magnetic field,” Int. Appl. Mech., 48, No. 1, 94–100 (2012).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    L. V. Mol’chenko and I. I. Loos, “The stress state of a flexible orthotropic spherical shell subject to external current and mechanical force in a magnetic field,” Int. Appl. Mech., 49, No. 5, 528–533 (2013).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    L. V. Mol’chenko, I. I. Loos, and L. M. Fedorchenko, “Axisymmetric magnetoelastic deformation of a flexible orthotropic ring with orthotropic conductivity,” Int. Appl. Mech., 49, No. 3, 322–327 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    L. V. Mol’chenko, I. I. Loos, and R. Sh. Indiaminov, “Nonlinear deformation of conical shells in magnetic fields,” Int. Appl. Mech., 33, No. 3, 221–226 (1997).Google Scholar
  15. 15.
    L. V. Mol’chenko, I. I. Loos, and R. Sh. Indiaminov, “Determining the stress state of flexible orthotropic shells of revolution in magnetic field,” Int. Appl. Mech., 44, No. 8, 882–891 (2008).ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    L. V. Mol’chenko, I. I. Loos, and R. Sh. Indiaminov, “Stress–strain state of flexible ring plates of variable stiffness in a magnetic field,” Int. Appl. Mech., 45, No. 11, 1236–1242 (2009).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    L. V. Mol’chenko, I. I. Loos, and I. V. Plyas, “Stress analysis of a flexible ring plate with circumferentially varying stiffness in a magnetic field,” Int. Appl. Mech., 46, No. 5, 567–573 (2010).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    L. V. Mol’chenko, I. I. Loos, and I. V. Plyas, “Effect of the tangential components of magnetic-flux density on the stress state of a flexible circular cylinder with variable stiffness,” Int. Appl. Mech., 47, No. 3, 313–319 (2011).ADSCrossRefMATHGoogle Scholar
  19. 19.
    F. C. Moon, Magneto-Solid Mechanics, John Wiley & Sons, New York (1984).Google Scholar
  20. 20.
    F. C. Moon and S. Chattopadhyay, “Magnetically induced stress waves in a conducting solid: Theory and experiment,” Trans. ASME, J. Appl. Mech., 41, No. 3, 641–646 (1974).Google Scholar
  21. 21.
    N. M. Newmark, “A method of computation for structural dynamics,” ASCE, J. Eng. Mech. Div., 85, No. 7, 67–97 (1959).Google Scholar
  22. 22.
    J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford (1964).MATHGoogle Scholar
  23. 23.
    Y.-H. Pao and K. Hutter, “Electrodynamis for moving elastic solids and viscous fluids,” Proc. IEEE, 63, No. 7, 1011–1021 (1975).MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. T. Smith, “Stress-induced anisotropy in solids—the acousto-elastic effect,” Ultrasonics, 1, No. 3, 135–147 (1963).Google Scholar
  25. 25.
    C. Truesdell and W. Noll, “The nonlinear field theories of mechanics,” in: S. Flügges (ed.), Handbuch der Physic, Vol. III/3, Springer-Verlag, Berlin (1960), pp. 1–602.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations