Skip to main content
Log in

Identification of Faults of Navigation Sensors

  • Published:
International Applied Mechanics Aims and scope

Algorithms for the identification of a failed sensor are presented. For this purpose, it is possible to use computational procedures similar to the Kalman filter. The case where five sensors are used to measure the angular velocity is considered. In this case, the computational procedures for the identification of the failed sensor can be simplified. The efficiency of the algorithms is illustrated by way of examples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Calculations [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  2. N. Yu. Kuznetsov and A. A. Shumskaya, “Estimating the risk of failure of a redundant system by accelerated simulation,” Probl. Upravl. Inform., No. 3, 50–62 (2013).

  3. V. B. Larin, “Singular value expansion of a matrix in the fault detection problem,” Kibern. Vych. Tekhn., 101, 86–88 (1994).

    MathSciNet  MATH  Google Scholar 

  4. D. V. Lebedev, “Identification of faults in the sensor unit of an inertial navigation system,” Avtomatika, No. 2, 39–44 (1992).

  5. C. L. Lawson and R. J. Hanson, Solving Least-Squares Problems, Prentice-Hall, Englewood Cliffs, N.J. (1974).

    MATH  Google Scholar 

  6. J. J. Deyst, J. V. Harrison, E. Gai, and K. C. Daly, “Fault detection, identification and reconfiguration for spacecraft systems,” J. Astron. Sci., 29, No. 2, 113–126 (1981).

    Google Scholar 

  7. M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation and Integration, John Wiley & Sons, New York (2001).

    Google Scholar 

  8. H. F. Grip, T. I. Fossen, T. A. Johansen, and A. Saberi, “Attitude estimation using biased gyro and vector measurements with time-varying reference vectors,” IEEE Trans. Autom. Contr., 57, No 5, 1332–1338 (2012).

    Article  MathSciNet  Google Scholar 

  9. A. S. Khoroshun and L. V. Nazarenko, “Deformation and damage of composites with anisotropic components (review),” Int. Appl. Mech., 49, No. 4, 388–455 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. B. Larin and A. A. Tunik, “On inertial navigation system error correction,” Int. Appl. Mech., 48, No. 2, 213–223 (2012).

    Article  ADS  MATH  Google Scholar 

  11. V. B. Larin and A. A. Tunik, “On inertial navigation system without angular-rate sensors,” Int. Appl. Mech., 49, No. 4, 488–500 (2013).

    Article  ADS  Google Scholar 

  12. R. C. K. Lee, Optimal Estimation, Identification, and Control, No. 28 The M.I.T. Press, Cambridge, (1964).

  13. S. Tanaka and J. C. Muller, “Fault detection in linear discrete dynamic systems by a pattern recognition of generalized-likelihood-ratio,” Trans. ASME, J. Dynam. Syst. Measur. Contr., 112, 276–292 (1990).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Larin.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 51, No. 6, pp. 112–118, November–December 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, V.B. Identification of Faults of Navigation Sensors. Int Appl Mech 51, 696–701 (2015). https://doi.org/10.1007/s10778-015-0727-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-015-0727-1

Keywords

Navigation