International Applied Mechanics

, Volume 51, Issue 6, pp 623–639 | Cite as

Problem of Electromagnetoviscoelasticity for Multiply Connected Plates

  • S. A. Kaloerov
  • A. A. Samodurov

A method for solving the problem of electromagnetoviscoelasticity for multiply connected plates is proposed. The small-parameter method is used to reduce this problem to a recursive sequence of problems of electromagnetoelasticity, which are solved by using complex potentials. A procedure is developed to determine, using complex potentials, approximations of the basic characteristics (stresses, electromagnetic-field strength, electromagnetic-flux density) of the electromagnetoelastic state at any time after application of a load. A plate with an elliptic hole is considered as an example. The variation in the electromagnetoelastic state of the multiply connected plate with time is studied


multiply connected electromagnetoviscoelastic plate time operator complex potential small-parameter method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. K. Ashkenazi and E. V. Ganov, Anisotropy of Structural Materials: Handbook [in Russian], Mashinostroenie, Leningrad (1980).Google Scholar
  2. 2.
    V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1989).Google Scholar
  3. 3.
    S. A. Kaloerov, A. I. Baeva, and O. I. Boronenko, Two-Dimensional Problems of Electro- and Magnetoelasticity for Multiply Connected Media [in Russian], Yugo-Vostok, Donetsk (2007).Google Scholar
  4. 4.
    S. A. Kaloerov and E. S. Goryanskaya, “Two-dimensional stress–strain state of a multiply connected anisotropic body,” in: Stress Concentration, Vol. 7 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kyiv (1998), pp. 10–26.Google Scholar
  5. 5.
    S. A. Kaloerov and O. A. Parshikova, “Solving a thermoviscoelastic problem for an anisotropic plate,” Teor. Prikl. Mekh., 48, No. 2, 51–70 (2011).Google Scholar
  6. 6.
    S. A. Kaloerov and A. V. Petrenko, Two-Dimensional Problems of Electromagnetoelasticity for Multiply Connected Bodies [in Russian], Yugo-Vostok, Donetsk (2011).Google Scholar
  7. 7.
    S. A. Kaloerov and A. A. Samodurov, “Analysis of the electromagnetoelastic state of a piezoelectric plate with reinforced holes,” Visn. Donets. Univ., Ser. A: Prirodn. Nauky, 1, 42–84 (2013).Google Scholar
  8. 8.
    R. M. Christensen, Theory of Viscoelasticity. An Introduction, Academic Press, New York (1971).Google Scholar
  9. 9.
    S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, Mir, Moscow (1981).MATHGoogle Scholar
  10. 10.
    V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectric and Electroconductive Bodies [in Russian], Nauka, Moscow (1988).Google Scholar
  11. 11.
    Yu. N. Rabotnov, “Equilibrium of an elastic medium with memory,” Prikl. Mat. Mekh., 12, No. 1, 53–62 (1948).MathSciNetMATHGoogle Scholar
  12. 12.
    Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland, Amsterdam (1969).Google Scholar
  13. 13.
    Y. N. Rabotnov, Elements of Hereditary Solid Mechanics, Mir, Moscow (1980).MATHGoogle Scholar
  14. 14.
    G. N. Savin, Stress Distribution around Holes [in Russian], Naukova Dumka, Kyiv (1968).Google Scholar
  15. 15.
    A. Ask, A. Menzel, and M. Ristinmaa, “Electrostriction in electro-viscoelastic polymers,” Mech. Mater., 50, 9–21 (2012).CrossRefGoogle Scholar
  16. 16.
    A. Ask, A. Menzel, and M. Ristinmaa, “Phenomenological modeling of viscous electrostrictive polymers,” Int. J. Non-Linear Mech., 47, 156–165 (2012).CrossRefADSGoogle Scholar
  17. 17.
    A. Hrennikoff, “Solution of problems of elasticity by the framework method,” J. Appl. Mech., 8, A169–A175 (1941).MathSciNetMATHGoogle Scholar
  18. 18.
    S. A. Kaloerov and A. B. Mironenko, “Analyzing the viscoelastic state of a plate with elliptic or linear elastic inclusions,” Int. Appl. Mech., 43, No. 2, 198–208 (2007).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    S. A. Kaloerov and O. A. Parshikova, “Thermoviscoelastic state of multiply connected anisotropic plates,” Int. Appl. Mech., 48, No. 2, 319–331 (2012).CrossRefADSMathSciNetMATHGoogle Scholar
  20. 20.
    A. A. Kaminsky, “Study of the deformation of anisotropic viscoelastic bodies,” Int. Appl. Mech., 36, No. 11, 1434–1457 (2000).CrossRefADSGoogle Scholar
  21. 21.
    T. Tang and W. Yu, “Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method,” Smart Mater. Struct., 18, 1–14 (2009).CrossRefGoogle Scholar
  22. 22.
    W.-Y. Tian and U. Gabbert, “Multiple crack interaction problem in magnetoelectroelastic solids,” Europ. J. Mech., Part A, 23, 599–614 (2004).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Donetsk National UniversityVinnytsiaUkraine

Personalised recommendations