International Applied Mechanics

, Volume 51, Issue 4, pp 391–402 | Cite as

Exact Solution of Some Axisymmetric Problems for Elastic Cylinders of Finite Length Taking Into Account Specific Weight

  • G. Ya. Popov
  • Yu. S. Protserov
  • I. A. Gonchar

The finite Hankel transform is used to find the exact solution of two axisymmetric problems of elasticity for solid and hollow cylinders of finite length taking their specific weight into account. The boundary conditions at the lower end and on the lateral faces of the cylinders are sliding restraint. Axisymmetric normal and tangential forces act on the upper end. The transforms of the displacements and stresses are obtained. The calculated normalized stresses on the outside and inside cylindrical surfaces are plotted for different height ratios


solid and hollow cylinders of finite length specific weight sliding restraint finite Hankel transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Abramyan and A. Ya. Aleksandrov, “An axisymmetric problem of elasticity,” in: Proc. 2nd All-Union Congr. on Theoretical and Applied Mechanics [in Russian], Issue 3, Nauka, Moscow (1966), pp. 7–37.Google Scholar
  2. 2.
    G. N. Bukharinov, “Revisiting the problem of the equilibrium of an elastic circular cylinder,” Vestn. Leningrad. Univ., No. 2, 3–23 (1952).Google Scholar
  3. 3.
    A. N. Guz and Yu. N. Nemish, Statics of Noncanonical Elastic Bodies in Vol. 2 of the six-volume series Three-Dimensional Problems in Elasticity and Plasticity [in Russian], Naukova Dumka, Kyiv (1984).Google Scholar
  4. 4.
    O. O. Kapshivyi, “Applying p-analytic functions in an axisymmetric problem of elasticity,” Visn. Kyiv. Univ., Ser. Mat. Mekh., 1, No. 5, 76–89 (1962).Google Scholar
  5. 5.
    M. A. Koltunov, Yu. N. Vasil’ev, and V. A. Chernykh, Elasticity and Strength of Cylindrical Bodies [in Russian], Vysshaya Shkola, Moscow (1975).Google Scholar
  6. 6.
    G. Ya. Popov, “A method of integral transforms applied to find the exact solutions of boundary-value problems of mathematical physics,” Mat. Met. Fiz.-Mekh. Polya, 46, No. 3, 74–89 (2003).Google Scholar
  7. 7.
    G. Ya. Popov, “Axisymmetrical boundary-value problems of elasticity theory for finite-length cylinders and cones,” Dokl. Phys., 56, No. 7, 407–412 (2011).Google Scholar
  8. 8.
    G. Ya. Popov and Yu. S. Protserov, “Axisymmetric problem for an elastic cylinder of finite length with clamped lateral surface under gravity,” Mat. Met. Fiz.-Mekh. Polya, 57, No. 1, 57–68 (2014).Google Scholar
  9. 9.
    M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York (1972).MATHGoogle Scholar
  10. 10.
    E. Jahnke, F. Emde, and F. Losch, Tafeln hoherer Funktionen, B. G. Teubner Verlagsgesellschaft, Stuttgart (1960).Google Scholar
  11. 11.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. 2: Bessel Functions, Parabolic Cylinder Functions and Orthogonal Polynomial, McGraw-Hill, New York (1953).Google Scholar
  12. 12.
    K. T. Chau and X. C. Wei, “Finite solid circular cylinders subjected to arbitrary surface load. Part I. Analytic solution,” Int. J. Solids Struct., 37, No. 40, 5707–5732 (2000).MATHCrossRefGoogle Scholar
  13. 13.
    S. D. Conte, K. Z. Miller, and C. B. Sensenig, “The numerical solution of axisymmetric problems in elasticity,” Ballist. Missile Space Techn., No. 4, 173–202 (1969).Google Scholar
  14. 14.
    Ya. M. Grigorenko and A. Ya. Grigorenko, “Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review),” Int. Appl. Mech., 49, No. 2, 123–197 (2013).Google Scholar
  15. 15.
    Ya. M. Grigorenko and L. S. Rozhok, “Applying discrete Fourier series to solve problems of the stress state of hollow noncircular cylinders,” Int. Appl. Mech., 50, No. 2, 105–127 (2014).Google Scholar
  16. 16.
    V. V. Meleshko, “Equilibrium of an elastic finite cylinder. Filon’s problem revisited,” J. Eng. Math., 40, 355–376 (2003).MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Ya. Popov, “New transforms for the resolving equations in elastic theory and new integral transforms, with applications to boundary-value problems of mechanics,” Int. Appl. Mech., 39, No. 12, 1400 – 1424 (2003).Google Scholar
  18. 18.
    V. P. Revenko, “Investigation of the stress–strain state of a finite cylinder under the action of compressive forces,” Mater. Sci., 46, No. 3, 330–335 (2010).CrossRefGoogle Scholar
  19. 19.
    T. A. Vasil’ev and V. A. Shaldyrvan, “Local stress singularities in mixed axisymmetric problems of the bending of circular cylinders,” Int. Appl. Mech., 48, No. 2, 176–187 (2012).MATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    X. X. Wei and K. T. Chan, “Three-dimensional analytical solution for finite circular cylinders subjected to indirect tensile test,” Int. J. Solids Struct., 50, No. 14, 2395–2406 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. Ya. Popov
    • 1
  • Yu. S. Protserov
    • 1
  • I. A. Gonchar
    • 1
  1. 1.I. I. Mechnikov Odessa National UniversityOdessaUkraine

Personalised recommendations