International Applied Mechanics

, Volume 51, Issue 2, pp 187–195 | Cite as

Effect of Boundary Conditions on the Natural Frequencies and Vibration Modes of Piezoelectric Plates with Radially Cut Electrodes

  • V. V. Levchenko

The general solution to the problem of the nonaxisymmetric electromechanical vibrations of a piezoceramic ring plate is found. The effect of boundary conditions (clamped edge–free edge, free edge–clamped edge, free edge–free edge) on the natural frequency spectra (for the first circumferential harmonics) of plates with radially cut electrode coating is numerically analyzed


piezoceramic ring plate radially cut electrode coating nonaxisymmetric electromechanical vibrations natural frequency spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Dover, New York (1990).Google Scholar
  2. 2.
    N. A. Shul’ga and A. M. Bolkisev, Vibrations of Piezoelectric Bodies [in Russian], Naukova Dumka, Kyiv (1990).Google Scholar
  3. 3.
    M. O. Shul’ga, ”Revisiting the theory of nonaxisymmetric electromechanical vibrations of piezoceramic plates polarized across the thickness,” Sist. Tekhnol., No. 7, 63–68 (2007).Google Scholar
  4. 4.
    M. O. Shul’ga and V. V. Levchenko, “Revisiting the theory of nonaxisymmetric electroelastic vibrations of piezoceramic plates,” Dop. NAN Ukrainy, No. 6, 6168 (2012).Google Scholar
  5. 5.
    E. Dieulesant and D. Royer, Ondes elastiques dans les solides. Application au raiment du signal, Masson et C, Paris (1974).Google Scholar
  6. 6.
    T. S. Krasnopolskaya and A. Yu. Shvets, “Deterministic chaos in a system generator–piezoceramic transducer,” Nonlin. Dynam. Syst. Theor., 6, No. 4, 367–387 (2006).MATHMathSciNetGoogle Scholar
  7. 7.
    C. H. Huang, C. C. Ma, and Y. C. Lin, “Theoretical, numerical, and experimental investigation on resonant vibrations of piezoceramic annular disks,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 52, No. 8, 1204–1216 (2005).Google Scholar
  8. 8.
    C. H. Huang, “Resonant vibration investigations for piezoceramic disks and annuli by using the equivalent constant method,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 52, No. 8, 1217–1228 (2005).Google Scholar
  9. 9.
    W. P. Mason, “Piezoelectricity, its history and applications,” J. Acoust. Soc. Am., 70, No. 6, 1561–1566 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    N. A. Shul’ga, “Mixed systems of equations in Kirchhoff’s theory of the transverse vibrations of plates,” Int. Appl. Mech., 49, No. 2, 194–202 (2013).CrossRefGoogle Scholar
  11. 11.
    N. A. Shul’ga and V. V. Levchenko, “Natural modes of piezoelectric circural plates with radially cut electrodes,” Int. Appl. Mech., 50, No. 5, 582–592 (2014).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    N. A. Shul’ga, L. O. Grigor’eva, and N. O. Babkova, “Electrically excited nonstationary vibrations of thin circular piezoelectric plates,” Int. Appl. Mech., 50, No. 4, 406–411 (2014).CrossRefGoogle Scholar
  13. 13.
    H. F. Tiersten, Linear Theory of Piezoelectric Plate Vibrations, Plenum Press, New York (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations