Advertisement

International Applied Mechanics

, Volume 51, Issue 1, pp 12–63 | Cite as

Stability and Nonlinear Vibrations of Closed Cylindrical Shells Interacting with a Fluid Flow (Review)

  • V. D. Kubenko
  • P. S. Koval’chuk
Article

Results of systematic study of the stability and nonlinear vibrations of thin cylindrical shells interacting with a fluid flow are presented. The main patterns of dynamical deformation of shells during divergence and flutter are considered. The effect of different structural features (initial geometrical imperfections, added concentrated masses, boundary conditions, longitudinal and transverse static loads) on the critical (divergence and flutter) velocities is analyzed. The amplitude–frequency response of shells to external periodic radial loads and internal periodic pressure caused by small pulsations of the fluid velocity is determined. A method is proposed to solve nonlinear problems describing nonstationary processes of passing resonance zones by shells interacting with the fluid flow

Keywords

cylindrical shell incompressible ideal fluid stability critical velocity divergence flutter added mass geometrical imperfection resonance amplitude–frequency characteristic nonstationary process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    I. Ya. Amiro, V. A. Zarutskii, and V. G. Palamarchuk, Dynamics of Ribbed Shells [in Russian], Naukova Dumka, Kyiv (1983).Google Scholar
  3. 3.
    A. E. Baikov and P. S. Krasil’nikov, “The Ziegler effect in a non-conservative mechanical system,” J. Appl. Math. Mech., 74, No. 1, 51–60 (2010).MathSciNetCrossRefGoogle Scholar
  4. 4.
    N. N. Bogolyubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1962).Google Scholar
  5. 5.
    V. V. Bolotin, The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA (1964).MATHGoogle Scholar
  6. 6.
    V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, Oxford (1963).MATHGoogle Scholar
  7. 7.
    A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).Google Scholar
  8. 8.
    A. S. Vol’mir, Shells in Fluid Flow: Problems of Hydroelasticity [in Russian], Nauka, Moscow (1979).Google Scholar
  9. 9.
    R. F. Ganiev and P. S. Koval’chuk, Dynamics of Systems of Rigid and Elastic Bodies [in Russian], Mashinostroenie, Moscow (1980).Google Scholar
  10. 10.
    J. Horáèek and I. Zolotarev, “Influence of fixing the edges of a cylindrical shell with conveying fluid on its dynamic characteristics,” Int. Appl. Mech., 20, No. 8, 756–765 (1984).ADSGoogle Scholar
  11. 11.
    J. Horáèek and I. A. Zolotarev, “Natural vibrations and stability of cylindrical shells interacting with a fluid flow,” in: A. N. Guz (ed.), Dynamics of Bodies Interacting with a Medium [in Russian], Naukova Dumka, Kyiv (1991), pp. 215–272.Google Scholar
  12. 12.
    E. I. Grigolyuk and A. G. Gorshkov, Nonstationary Hydroelasticity of Shells [in Russian], Sudostroenie, Leningrad (1974).Google Scholar
  13. 13.
    V. D. Kubenko (ed.), Dynamics of Structural Members, Vol. 9 of the 12-volume series Mechanics of Composite Materials [in Russian], ASK, Kyiv (1999).Google Scholar
  14. 14.
    A. N. Guz (ed.), S. Markus, L. Pust, et al., Dynamics of Bodies Interacting with a Medium [in Russian], Naukova Dumka, Kyiv (1991).Google Scholar
  15. 15.
    M. A. Il’gamov, Introduction to Nonlinear Hydroelasticity [in Russian], Nauka, Moscow (1991).Google Scholar
  16. 16.
    P. S. Koval’chuk, “Nonlinear bending waves in orthotropic shells of revolution (propagation and interaction),” in: V. D. Kubenko (ed.), Dynamics of Structural Members, Vol. 9 of the 12-volume series Mechanics of Composite Materials [in Russian], ASK, Kyiv (1999), pp. 223–246.Google Scholar
  17. 17.
    P. S. Koval’chuk and S. S. Kovtun, “Forced vibrations of cylindrical shells interacting with a pulsating fluid flow,” Nauk. Visn. Nats. Agrarn. Univ., 112, 65–71 (2007).Google Scholar
  18. 18.
    P. S. Koval’chuk and S. S. Kovtun, “Analysis of nonstationary processes in a fluid-conveying pipeline passing a parametric resonance,” Nauk. Visn. Nats. Agrarn. Univ., 113, 86–92 (2008).Google Scholar
  19. 19.
    P. S. Koval’chuk, S. S. Kovtun, and G. N. Puchka, “Stability analysis of cylindrical shells with added mass interacting with a fluid flow,” Nauk. Visn. Nats. Univ. Biores. Pryrodokoryst. Ukrainy, 137, 55–60 (2009).Google Scholar
  20. 20.
    P. S. Koval’chuk and L. A. Kruk, “Nonlinear interaction of bending modes of cylindrical composite shells filled with a fluid,” Dop. NAN Ukrainy, No. 4, 65–71 (2007).Google Scholar
  21. 21.
    V. D. Kubenko, P. S. Koval’chuk, L. G. Boyarshina, et al., Nonlinear Dynamics of Axisymmetric Bodies Filled with a Fluid [in Russian], Naukova Dumka, Kyiv (1992).Google Scholar
  22. 22.
    V. D. Kubenko, P. S. Koval’chuk, and T. S. Krasnopol’skaya, Nonlinear Interaction of Flexural Vibration Modes of Cylindrical Shells [in Russian], Naukova Dumka, Kyiv (1984).Google Scholar
  23. 23.
    V. D. Kubenko, P. S. Koval’chuk, and N. P. Podchasov, Nonlinear Vibrations of Cylindrical Shells [in Russian], Vyshcha Shkola, Kyiv (1989).Google Scholar
  24. 24.
    V. D. Kubenko, P. S. Koval’chuk, and M. P. Podchasov, “Stability analysis of cylindrical shells interacting with a fluid flow,” Dop. NAN Ukrainy, No. 5, 50–56 (2010).Google Scholar
  25. 25.
    D. R. Merkin, Introduction to the Theory of Stability, Texts in Applied Mathematics 24, Springer-Verlag, New York (1997).Google Scholar
  26. 26.
    N. A. Kil’chevskii (ed.), Mechanics of Shell–Fluid–Heated-Gas Systems [in Russian], Naukova Dumka, Kyiv (1970).Google Scholar
  27. 27.
    V. I. Feodos’ev, “Vibrations and stability of a fluid-conveying pipe,” Inzh. Sb., 94, 169–170 (1951).Google Scholar
  28. 28.
    H. Ziegler, Principles of Structural Stability, Blaisdel, Waltham (1968).Google Scholar
  29. 29.
    R. L. Halfman, Dynamics, Addison-Wesley, New York (1962).Google Scholar
  30. 30.
    M. Amabili, Nonlinear Vibration and Stability of Shells and Plates, Cambridge University Press, Cambridge (2008).CrossRefGoogle Scholar
  31. 31.
    M. Amabili, “A comparison of shell theories for large-amplitude vibrations of circular ñylindrical shells: Lagrangian approach,” J. Sound Vibr., 264, 1091–1125 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    M. Amabili and M. P. Païdoussis, “Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid–structure interaction,” Appl. Mech. Rev., 56, No. 4, 349–381 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    M. Amabili, F. Pellicano, and M. P. Païdoussis, “Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part I: Stability,” J. Sound Vibr., 225, No. 4, 655–699 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    M. Amabili, F. Pellicano, and M. P. Païdoussis, “Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part II: Large amplitude vibrations without flow,” J. Sound Vibr., 228, No. 5, 1103–1124 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    M. Amabili, F. Pellicano, and M. P. Païdoussis, “Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: Truncation effect without flow and experiments,” J. Sound Vibr., 237, No. 4, 617–640 (2000).ADSCrossRefGoogle Scholar
  36. 36.
    M. Amabili, F. Pellicano, and M. P. Païdoussis, “Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid. Part IV: Large amplitude vibrations with flow,” J. Sound Vibr., 237, No. 4, 641–666 (2000).ADSCrossRefGoogle Scholar
  37. 37.
    M. Amabili, F. Pellicano, and M. P. Païdoussis, “Nonlinear stability of circular cylindrical shells in annual and unbounded axial flow,” J. Appl. Mech., 66, 827–834 (2001).CrossRefGoogle Scholar
  38. 38.
    S. S. Chen and C. E. Rosenberg, “Free vibrations of fluid-conveying cylindrical shells,” Trans ASME, J. Eng. Industry, 96, 420–426 (1974).CrossRefGoogle Scholar
  39. 39.
    E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang, Continuation and Bifurcation Software for Ordinary Differential Equations (with Hom-Cont), Concordia University Auto 97, Montreal, Canada (1998).Google Scholar
  40. 40.
    E. H. Dowell and K. C. Hall, “Modeling of fluid structure interaction,” Ann. Rev. Fluid Mech., 33, 445–490 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    V. A. Dzupanov and S. V. Lilkova-Markova, “Divergent instability domains of a fluid-conveying cantilevered pipe with a combined support,” Int. Appl. Mech., 40, No. 3, 319–321 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    J. Horachek and I. Zolotarev, “Stability and bending wave propagation in a long cylindrical shell containing a flowing fluid,” Strojnicky Casopis, 32, No. 6, 687–700 (1981).Google Scholar
  43. 43.
    J. Horachek and I. Zolotarev, “Natural frequencies, damping and stability of a structurally damped cylindrical shell conveying fluid,” Strojnicky Casopis, 34, No. 1–2, 189–204 (1983).Google Scholar
  44. 44.
    P. S. Koval’chuk, “Nonlinear vibrations of a cylindrical shell containing a flowing fluid,” Int. Appl. Mech., 41, No. 4, 405–412 (2005).CrossRefGoogle Scholar
  45. 45.
    P. S. Koval’chuk and L. A. Kruk, “Forced nonlinear oscillations of cylindrical shells interacting with fluid flow,” Int. Appl. Mech., 42, No. 4, 447–454 (2006).ADSCrossRefGoogle Scholar
  46. 46.
    P. S. Koval’chuk and L. A. Kruk, “Nonlinear parametric vibrations of orthotropic cylindrical shells interacting with a pulsating fluid flow,” Int. Appl. Mech., 45, No. 9, 1007–1015 (2009).ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    P. S. Koval’chuk, L. A. Kruk, and V. A. Pelykh, “Stability of composite cylindrical shells with added mass interacting with the internal fluid flow,” Int. Appl. Mech., 50, No. 5, 566–574 (2014).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    P. S. Koval’chuk, L. A. Kruk, and V. A. Pelykh, “Stability of differently fixed composite cylindrical shells interacting with fluid flow,” Int. Appl. Mech., 50, No. 6, 664–676 (2014).ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    P. S. Koval’chuk and N. P. Podchasov, “Influence of initial deflections on the stability of composite cylindrical shells interacting with a fluid flow,” Int. Appl. Mech., 47, No. 8, 902–911 (2011).MathSciNetCrossRefGoogle Scholar
  50. 50.
    P. S. Koval’chuk and N. P. Podchasov, “Stability of elastic cylindrical shells interacting with flowing fluid,” Int. Appl. Mech., 46, No. 1, 60–68 (2010).MATHCrossRefGoogle Scholar
  51. 51.
    P. S. Koval’chuk and G. N. Puchka, “Stability of cylindrical shells with added mass in fluid flow,” Int. Appl. Mech., 46, No. 5, 546–555 (2010).MathSciNetCrossRefGoogle Scholar
  52. 52.
    V. D. Kubenko and P. S. Koval’chuk, “Nonlinear problems of the vibration of cylindrical shells (review),” Int. Appl. Mech., 34, No. 8, 703–728 (1998).MathSciNetCrossRefGoogle Scholar
  53. 53.
    V. D. Kubenko and P. S. Koval’chuk, “Nonlinear problems of the dynamics of elastic shells partially filled with a liquid,” Int. Appl. Mech., 36, No. 4, 421–448 (2000).MathSciNetCrossRefGoogle Scholar
  54. 54.
    V. D. Kubenko and P. S. Koval’chuk, “Modeling the nonlinear interaction of standing and traveling bending waves in fluid-filled cylindrical shells subject to internal resonances,” Int. Appl. Mech., 50, No. 4, 353–364 (2014).MathSciNetCrossRefGoogle Scholar
  55. 55.
    V. D. Kubenko, P. S. Koval’chuk, and L. A. Kruk, “Nonlinear interaction of bending deformation of free oscillating cylindrical shells,” J. Sound Vibr., 265, 245–268 (2003).ADSMATHCrossRefGoogle Scholar
  56. 56.
    V. D. Kubenko, P. S. Koval’chuk, and L. A. Kruk, “Application of the asymptotic methods for investigation of the one-frequency nonlinear vibrations of the cylindrical shells, containing a flowing fluid,” Ukr. Math. J., 59, No. 4, 476–487 (2007).MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    V. D. Kubenko, P. S. Koval’chuk, and L. A. Kruk, “Influence of external loading on the stability of a fluid-conveying pipeline,” Int. Appl. Mech., 47, No. 6, 636–644 (2011).ADSMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    V. D. Kubenko, P. S. Koval’chuk, and N. P. Podchasov, “Analysis of non-stationary processes in cylindrical shells interacting with a fluid flow,” Int. Appl. Mech., 47, No. 10, 1119–1131 (2011).MathSciNetGoogle Scholar
  59. 59.
    A. A. Lakis and A. Laveau, “Non-linear dynamic analysis of anisotropic cylindrical shells containing a flowing fluid,” Int. J. Solids Struct., 28, 1079–1094 (1991).MATHCrossRefGoogle Scholar
  60. 60.
    Y. Matsuzaki and Y. C. Fung, “Unsteady fluid dynamic forces on a simply-supported circular cylinder of finite length conveying a flow, with applications to stability analysis,” J. Sound Vibr., 54, 317–330 (1977).ADSMATHCrossRefGoogle Scholar
  61. 61.
    V. B. Nguyem, M. P. Pa¿doussis, and A. K. Misra, “An experimental study of the stability of cantilevered coaxial cylindrical shells conveying fluid,” J. Fluid. Struct., No. 7, 913–930 (1993).Google Scholar
  62. 62.
    M. P. Païdoussis, Fluid Structure Interaction. Slender Structures and Axial Flow, Vol. 2, Elsevier Academic Press, London (2004).Google Scholar
  63. 63.
    M. P. Païdoussis, S. P. Chan, and A. K. Misra, ”Dynamics and stability of coaxial cylindrical shells containing flowing fluid,” J. Sound. Vibr., 97, 201–235 (1984).ADSCrossRefGoogle Scholar
  64. 64.
    M. P. Pa¿doussis, A. K. Misra, and V. B. Nguyem, “A CFD-based model for the study of the stability of cantilevered coaxial cylindrical shells conveying viscous fluid,” J. Sound. Vibr., 176, 105–235 (1994).ADSCrossRefGoogle Scholar
  65. 65.
    M. P. Païdoussis, V. B. Nguyem, and A. K. Misra, “A theoretical study of the stability of cantilevered coaxial cylindrical shells conveying fluid,” J. Fluid. Struct., No. 5, 127–164 (1991).Google Scholar
  66. 66.
    F. Pellicano and M. Amabili, “Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads,” Int. J. Solids Struct., 40, 3229–3251 (2003).MATHCrossRefGoogle Scholar
  67. 67.
    F. Pellicano, Y. Mikhlin, and I. Zolotarev, Nonlinear dynamics of shells with fluid structure interaction containing flowing fluid, Publ. Inst. Thermomech. AS CR, Prague (2002).Google Scholar
  68. 68.
    A. Selmane and A. A. Lakis, “Non-linear dynamic analysis of orthotropic cylindrical shells subjected to a flowing fluid,” J. Sound Vibr., 202, 67–93 (1997).ADSCrossRefGoogle Scholar
  69. 69.
    D. S. Wearer and T. E. Unny, “On the dynamic stability domains of fluid-conveying pipes with a combined support the moving and rested on combined bearing,” Trans ASME, J. Appl. Mech., 40, No. 3, 48–52 (1973).ADSGoogle Scholar
  70. 70.
    I. Zolotarev, “Natural vibrations of cylindrical shell conveying fluid with spring supported ends,” Strojnicky Casopis, 38, No. 5, 533–550 (1987).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations