Skip to main content
Log in

Stability and Nonlinear Vibrations of Closed Cylindrical Shells Interacting with a Fluid Flow (Review)

  • Published:
International Applied Mechanics Aims and scope

Results of systematic study of the stability and nonlinear vibrations of thin cylindrical shells interacting with a fluid flow are presented. The main patterns of dynamical deformation of shells during divergence and flutter are considered. The effect of different structural features (initial geometrical imperfections, added concentrated masses, boundary conditions, longitudinal and transverse static loads) on the critical (divergence and flutter) velocities is analyzed. The amplitude–frequency response of shells to external periodic radial loads and internal periodic pressure caused by small pulsations of the fluid velocity is determined. A method is proposed to solve nonlinear problems describing nonstationary processes of passing resonance zones by shells interacting with the fluid flow

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  2. I. Ya. Amiro, V. A. Zarutskii, and V. G. Palamarchuk, Dynamics of Ribbed Shells [in Russian], Naukova Dumka, Kyiv (1983).

    Google Scholar 

  3. A. E. Baikov and P. S. Krasil’nikov, “The Ziegler effect in a non-conservative mechanical system,” J. Appl. Math. Mech., 74, No. 1, 51–60 (2010).

    Article  MathSciNet  Google Scholar 

  4. N. N. Bogolyubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1962).

    Google Scholar 

  5. V. V. Bolotin, The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA (1964).

    MATH  Google Scholar 

  6. V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, Oxford (1963).

    MATH  Google Scholar 

  7. A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  8. A. S. Vol’mir, Shells in Fluid Flow: Problems of Hydroelasticity [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  9. R. F. Ganiev and P. S. Koval’chuk, Dynamics of Systems of Rigid and Elastic Bodies [in Russian], Mashinostroenie, Moscow (1980).

    Google Scholar 

  10. J. Horáèek and I. Zolotarev, “Influence of fixing the edges of a cylindrical shell with conveying fluid on its dynamic characteristics,” Int. Appl. Mech., 20, No. 8, 756–765 (1984).

    ADS  Google Scholar 

  11. J. Horáèek and I. A. Zolotarev, “Natural vibrations and stability of cylindrical shells interacting with a fluid flow,” in: A. N. Guz (ed.), Dynamics of Bodies Interacting with a Medium [in Russian], Naukova Dumka, Kyiv (1991), pp. 215–272.

    Google Scholar 

  12. E. I. Grigolyuk and A. G. Gorshkov, Nonstationary Hydroelasticity of Shells [in Russian], Sudostroenie, Leningrad (1974).

    Google Scholar 

  13. V. D. Kubenko (ed.), Dynamics of Structural Members, Vol. 9 of the 12-volume series Mechanics of Composite Materials [in Russian], ASK, Kyiv (1999).

  14. A. N. Guz (ed.), S. Markus, L. Pust, et al., Dynamics of Bodies Interacting with a Medium [in Russian], Naukova Dumka, Kyiv (1991).

  15. M. A. Il’gamov, Introduction to Nonlinear Hydroelasticity [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  16. P. S. Koval’chuk, “Nonlinear bending waves in orthotropic shells of revolution (propagation and interaction),” in: V. D. Kubenko (ed.), Dynamics of Structural Members, Vol. 9 of the 12-volume series Mechanics of Composite Materials [in Russian], ASK, Kyiv (1999), pp. 223–246.

    Google Scholar 

  17. P. S. Koval’chuk and S. S. Kovtun, “Forced vibrations of cylindrical shells interacting with a pulsating fluid flow,” Nauk. Visn. Nats. Agrarn. Univ., 112, 65–71 (2007).

    Google Scholar 

  18. P. S. Koval’chuk and S. S. Kovtun, “Analysis of nonstationary processes in a fluid-conveying pipeline passing a parametric resonance,” Nauk. Visn. Nats. Agrarn. Univ., 113, 86–92 (2008).

    Google Scholar 

  19. P. S. Koval’chuk, S. S. Kovtun, and G. N. Puchka, “Stability analysis of cylindrical shells with added mass interacting with a fluid flow,” Nauk. Visn. Nats. Univ. Biores. Pryrodokoryst. Ukrainy, 137, 55–60 (2009).

    Google Scholar 

  20. P. S. Koval’chuk and L. A. Kruk, “Nonlinear interaction of bending modes of cylindrical composite shells filled with a fluid,” Dop. NAN Ukrainy, No. 4, 65–71 (2007).

  21. V. D. Kubenko, P. S. Koval’chuk, L. G. Boyarshina, et al., Nonlinear Dynamics of Axisymmetric Bodies Filled with a Fluid [in Russian], Naukova Dumka, Kyiv (1992).

    Google Scholar 

  22. V. D. Kubenko, P. S. Koval’chuk, and T. S. Krasnopol’skaya, Nonlinear Interaction of Flexural Vibration Modes of Cylindrical Shells [in Russian], Naukova Dumka, Kyiv (1984).

    Google Scholar 

  23. V. D. Kubenko, P. S. Koval’chuk, and N. P. Podchasov, Nonlinear Vibrations of Cylindrical Shells [in Russian], Vyshcha Shkola, Kyiv (1989).

    Google Scholar 

  24. V. D. Kubenko, P. S. Koval’chuk, and M. P. Podchasov, “Stability analysis of cylindrical shells interacting with a fluid flow,” Dop. NAN Ukrainy, No. 5, 50–56 (2010).

  25. D. R. Merkin, Introduction to the Theory of Stability, Texts in Applied Mathematics 24, Springer-Verlag, New York (1997).

    Google Scholar 

  26. N. A. Kil’chevskii (ed.), Mechanics of Shell–Fluid–Heated-Gas Systems [in Russian], Naukova Dumka, Kyiv (1970).

    Google Scholar 

  27. V. I. Feodos’ev, “Vibrations and stability of a fluid-conveying pipe,” Inzh. Sb., 94, 169–170 (1951).

    Google Scholar 

  28. H. Ziegler, Principles of Structural Stability, Blaisdel, Waltham (1968).

    Google Scholar 

  29. R. L. Halfman, Dynamics, Addison-Wesley, New York (1962).

    Google Scholar 

  30. M. Amabili, Nonlinear Vibration and Stability of Shells and Plates, Cambridge University Press, Cambridge (2008).

    Book  Google Scholar 

  31. M. Amabili, “A comparison of shell theories for large-amplitude vibrations of circular ñylindrical shells: Lagrangian approach,” J. Sound Vibr., 264, 1091–1125 (2003).

    Article  ADS  Google Scholar 

  32. M. Amabili and M. P. Païdoussis, “Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid–structure interaction,” Appl. Mech. Rev., 56, No. 4, 349–381 (2003).

    Article  ADS  Google Scholar 

  33. M. Amabili, F. Pellicano, and M. P. Païdoussis, “Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part I: Stability,” J. Sound Vibr., 225, No. 4, 655–699 (1999).

    Article  ADS  Google Scholar 

  34. M. Amabili, F. Pellicano, and M. P. Païdoussis, “Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part II: Large amplitude vibrations without flow,” J. Sound Vibr., 228, No. 5, 1103–1124 (1999).

    Article  ADS  Google Scholar 

  35. M. Amabili, F. Pellicano, and M. P. Païdoussis, “Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: Truncation effect without flow and experiments,” J. Sound Vibr., 237, No. 4, 617–640 (2000).

    Article  ADS  Google Scholar 

  36. M. Amabili, F. Pellicano, and M. P. Païdoussis, “Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid. Part IV: Large amplitude vibrations with flow,” J. Sound Vibr., 237, No. 4, 641–666 (2000).

    Article  ADS  Google Scholar 

  37. M. Amabili, F. Pellicano, and M. P. Païdoussis, “Nonlinear stability of circular cylindrical shells in annual and unbounded axial flow,” J. Appl. Mech., 66, 827–834 (2001).

    Article  Google Scholar 

  38. S. S. Chen and C. E. Rosenberg, “Free vibrations of fluid-conveying cylindrical shells,” Trans ASME, J. Eng. Industry, 96, 420–426 (1974).

    Article  Google Scholar 

  39. E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang, Continuation and Bifurcation Software for Ordinary Differential Equations (with Hom-Cont), Concordia University Auto 97, Montreal, Canada (1998).

  40. E. H. Dowell and K. C. Hall, “Modeling of fluid structure interaction,” Ann. Rev. Fluid Mech., 33, 445–490 (2001).

    Article  ADS  Google Scholar 

  41. V. A. Dzupanov and S. V. Lilkova-Markova, “Divergent instability domains of a fluid-conveying cantilevered pipe with a combined support,” Int. Appl. Mech., 40, No. 3, 319–321 (2004).

    Article  ADS  Google Scholar 

  42. J. Horachek and I. Zolotarev, “Stability and bending wave propagation in a long cylindrical shell containing a flowing fluid,” Strojnicky Casopis, 32, No. 6, 687–700 (1981).

    Google Scholar 

  43. J. Horachek and I. Zolotarev, “Natural frequencies, damping and stability of a structurally damped cylindrical shell conveying fluid,” Strojnicky Casopis, 34, No. 1–2, 189–204 (1983).

    Google Scholar 

  44. P. S. Koval’chuk, “Nonlinear vibrations of a cylindrical shell containing a flowing fluid,” Int. Appl. Mech., 41, No. 4, 405–412 (2005).

    Article  Google Scholar 

  45. P. S. Koval’chuk and L. A. Kruk, “Forced nonlinear oscillations of cylindrical shells interacting with fluid flow,” Int. Appl. Mech., 42, No. 4, 447–454 (2006).

    Article  ADS  Google Scholar 

  46. P. S. Koval’chuk and L. A. Kruk, “Nonlinear parametric vibrations of orthotropic cylindrical shells interacting with a pulsating fluid flow,” Int. Appl. Mech., 45, No. 9, 1007–1015 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  47. P. S. Koval’chuk, L. A. Kruk, and V. A. Pelykh, “Stability of composite cylindrical shells with added mass interacting with the internal fluid flow,” Int. Appl. Mech., 50, No. 5, 566–574 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  48. P. S. Koval’chuk, L. A. Kruk, and V. A. Pelykh, “Stability of differently fixed composite cylindrical shells interacting with fluid flow,” Int. Appl. Mech., 50, No. 6, 664–676 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  49. P. S. Koval’chuk and N. P. Podchasov, “Influence of initial deflections on the stability of composite cylindrical shells interacting with a fluid flow,” Int. Appl. Mech., 47, No. 8, 902–911 (2011).

    Article  MathSciNet  Google Scholar 

  50. P. S. Koval’chuk and N. P. Podchasov, “Stability of elastic cylindrical shells interacting with flowing fluid,” Int. Appl. Mech., 46, No. 1, 60–68 (2010).

    Article  MATH  Google Scholar 

  51. P. S. Koval’chuk and G. N. Puchka, “Stability of cylindrical shells with added mass in fluid flow,” Int. Appl. Mech., 46, No. 5, 546–555 (2010).

    Article  MathSciNet  Google Scholar 

  52. V. D. Kubenko and P. S. Koval’chuk, “Nonlinear problems of the vibration of cylindrical shells (review),” Int. Appl. Mech., 34, No. 8, 703–728 (1998).

    Article  MathSciNet  Google Scholar 

  53. V. D. Kubenko and P. S. Koval’chuk, “Nonlinear problems of the dynamics of elastic shells partially filled with a liquid,” Int. Appl. Mech., 36, No. 4, 421–448 (2000).

    Article  MathSciNet  Google Scholar 

  54. V. D. Kubenko and P. S. Koval’chuk, “Modeling the nonlinear interaction of standing and traveling bending waves in fluid-filled cylindrical shells subject to internal resonances,” Int. Appl. Mech., 50, No. 4, 353–364 (2014).

    Article  MathSciNet  Google Scholar 

  55. V. D. Kubenko, P. S. Koval’chuk, and L. A. Kruk, “Nonlinear interaction of bending deformation of free oscillating cylindrical shells,” J. Sound Vibr., 265, 245–268 (2003).

    Article  ADS  MATH  Google Scholar 

  56. V. D. Kubenko, P. S. Koval’chuk, and L. A. Kruk, “Application of the asymptotic methods for investigation of the one-frequency nonlinear vibrations of the cylindrical shells, containing a flowing fluid,” Ukr. Math. J., 59, No. 4, 476–487 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  57. V. D. Kubenko, P. S. Koval’chuk, and L. A. Kruk, “Influence of external loading on the stability of a fluid-conveying pipeline,” Int. Appl. Mech., 47, No. 6, 636–644 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. V. D. Kubenko, P. S. Koval’chuk, and N. P. Podchasov, “Analysis of non-stationary processes in cylindrical shells interacting with a fluid flow,” Int. Appl. Mech., 47, No. 10, 1119–1131 (2011).

    MathSciNet  Google Scholar 

  59. A. A. Lakis and A. Laveau, “Non-linear dynamic analysis of anisotropic cylindrical shells containing a flowing fluid,” Int. J. Solids Struct., 28, 1079–1094 (1991).

    Article  MATH  Google Scholar 

  60. Y. Matsuzaki and Y. C. Fung, “Unsteady fluid dynamic forces on a simply-supported circular cylinder of finite length conveying a flow, with applications to stability analysis,” J. Sound Vibr., 54, 317–330 (1977).

    Article  ADS  MATH  Google Scholar 

  61. V. B. Nguyem, M. P. Pa¿doussis, and A. K. Misra, “An experimental study of the stability of cantilevered coaxial cylindrical shells conveying fluid,” J. Fluid. Struct., No. 7, 913–930 (1993).

  62. M. P. Païdoussis, Fluid Structure Interaction. Slender Structures and Axial Flow, Vol. 2, Elsevier Academic Press, London (2004).

    Google Scholar 

  63. M. P. Païdoussis, S. P. Chan, and A. K. Misra, ”Dynamics and stability of coaxial cylindrical shells containing flowing fluid,” J. Sound. Vibr., 97, 201–235 (1984).

    Article  ADS  Google Scholar 

  64. M. P. Pa¿doussis, A. K. Misra, and V. B. Nguyem, “A CFD-based model for the study of the stability of cantilevered coaxial cylindrical shells conveying viscous fluid,” J. Sound. Vibr., 176, 105–235 (1994).

    Article  ADS  Google Scholar 

  65. M. P. Païdoussis, V. B. Nguyem, and A. K. Misra, “A theoretical study of the stability of cantilevered coaxial cylindrical shells conveying fluid,” J. Fluid. Struct., No. 5, 127–164 (1991).

  66. F. Pellicano and M. Amabili, “Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads,” Int. J. Solids Struct., 40, 3229–3251 (2003).

    Article  MATH  Google Scholar 

  67. F. Pellicano, Y. Mikhlin, and I. Zolotarev, Nonlinear dynamics of shells with fluid structure interaction containing flowing fluid, Publ. Inst. Thermomech. AS CR, Prague (2002).

    Google Scholar 

  68. A. Selmane and A. A. Lakis, “Non-linear dynamic analysis of orthotropic cylindrical shells subjected to a flowing fluid,” J. Sound Vibr., 202, 67–93 (1997).

    Article  ADS  Google Scholar 

  69. D. S. Wearer and T. E. Unny, “On the dynamic stability domains of fluid-conveying pipes with a combined support the moving and rested on combined bearing,” Trans ASME, J. Appl. Mech., 40, No. 3, 48–52 (1973).

    ADS  Google Scholar 

  70. I. Zolotarev, “Natural vibrations of cylindrical shell conveying fluid with spring supported ends,” Strojnicky Casopis, 38, No. 5, 533–550 (1987).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Kubenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 51, No. 1, pp. 19–78, January–February 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubenko, V.D., Koval’chuk, P.S. Stability and Nonlinear Vibrations of Closed Cylindrical Shells Interacting with a Fluid Flow (Review). Int Appl Mech 51, 12–63 (2015). https://doi.org/10.1007/s10778-015-0672-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-015-0672-z

Keywords

Navigation