Advertisement

International Applied Mechanics

, Volume 50, Issue 6, pp 688–698 | Cite as

Waves in a Porous Viscoelastic Material Saturated with a Fluid

  • R. M. Israfilov
  • E. V. Savel’eva
Article
  • 34 Downloads

The problem for a fluid-saturated porous viscoelastic material is a direct analogy of the problem for a saturated elastic material solved earlier. The material is theoretically described using Biot’s classical linear model. The system of coupled integro-differential equations for the displacements of the skeleton and fluid is derived using the Volterra principle and Rabotnov’s operator method. The propagation of linear elastic waves in a half-space subject to a short harmonic pulse of given frequency is studied. The problem is solved using the Laplace transform method. The analytical solution in the frequency domain is obtained taking into account the viscoelastic properties of the skeleton. The inverse transformation procedure is described in detail

Keywords

linear viscoelastic wave viscoelastic half-space short pulse Laplace transform method Rabotnov’s operator method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Vyalov, Rheological Fundamentals of Soil Mechanics, Elsevier, New York (1986).zbMATHGoogle Scholar
  2. 2.
    N. S. Gorodetskaya, “Waves in poroelastic fluid-saturated media,” Akust. Vestn., 10, No. 2, 43–63 (2007).Google Scholar
  3. 3.
    R. M. Israfilov and E. V. Savel’eva, “Determining the material functions of a hereditary porous medium,” in: Proc. 15th Int. Conf. on Dynamical System Modeling and Stability Investigation [in Russian], Kyiv, May 25–27 (2011), p. 276.Google Scholar
  4. 4.
    R. M. Israfilov and E. V. Savel’eva, “Determining the kernels of the hereditary equation of a saturated porous medium (Biot),” in: Proc. 14 Int. Acad. M. Kravchuk Conf., Vol. I, Kyiv (2012), pp. 194–197.Google Scholar
  5. 5.
    V. N. Nikolaevskii, K. S. Basniev, A. G. Gorbunov, and G. A. Zotov, Mechanics of Saturated Porous Media [in Russian], Nauka, Moscow (1970).Google Scholar
  6. 6.
    Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland, Amsterdam (1969).zbMATHGoogle Scholar
  7. 7.
    Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable, Mir, Moscow (1985).Google Scholar
  8. 8.
    J. H. Berryman, “Confirmation of Biot’s theory,” Appl. Phys. Lett., 37, 382–384 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Biot, “Theory of elasticity and consolidation of an anisotropic porous medium,” Collection of translations and reviews of foreign periodicals, No. 1, 140–146 (1956).Google Scholar
  10. 10.
    M. A. Biot, “Theory of propagation of elastic waves in fluid-saturated porous solid” J. Acoust. Soc. Amer., 28, No. 2, 168–191 (1956).ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    F. A. Boyle and N. P. Chotiros, “Experimental detection of a slow acoustic wave in sediment at shallow grazing angels,” J. Acoust. Soc. Am., 91, 2615–2619 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    L. Chabot, Single-Well Imaging Using Full-Waveform Sonic Data, PhD Thesis, University of Calgary (2003).Google Scholar
  13. 13.
    V. P. Golub, Ya. B. Pavluk, and P. V. Fernaty, “Determining the parameters of fractional exponential hereditary kernels of nonlinear viscoelastic materials,” Int. Appl. Mech., 49, No. 2, 220–232 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    V. P. Golub, Yu. M. Kobzar’, and V. S. Ragulina, “Determining the parameters of the heredity kernels of nonmlinear viscoelastic materials in tension,” Int. Appl. Mech., 49, No. 1, 102–109 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Hashing and S. Stickman, Note on a Variational Approach to the Theory of Composite Elastic Materials, J. Franklin Inst. (1961).Google Scholar
  16. 16.
    L. P. Khoroshun and E. N. Shikula, “Deformation and long-term damage of homogeneous and composite materials of stochastic structure (review),” Int. Appl. Mech., 48, No. 1, 7–55 (2012).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    L. P. Khoroshun and E. N. Shikula, “Deformation and damage of composite materials of stochastic structure: Physically nonlinear problems (revew),” Int. Appl. Mech., 49, No. 4, 130–142 (2013).CrossRefMathSciNetGoogle Scholar
  18. 18.
    G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook, Univ. Press, Cambridge (1998).Google Scholar
  19. 19.
    J. J. Rushchitsky and R. M. Israfilov, “Waves in saturated porous half-space. Part I,” Int. Appl. Mech., 37, No. 4, 520–527 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    J. J. Rushchitsky and R. M. Israfilov, “Waves in saturated porous half-space. Part II,” Int. Appl. Mech., 37, No. 5, 570–681 (2001).Google Scholar
  21. 21.
    R. Stoll, “Acoustic waves in ocean sediments,” Geophysics, 42, No. 4, 715–725 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    D. Tsiklauri, “Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with non-zero boundary slip velocity,” J. Acoust. Soc. Am., 112, 843–849 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    D. Tsiklauri and I. Beresnev, “Properties of elastic waves in a non-Newtonian fluid saturated porous medium,” Transport in Porous Media, 53, 39–50 (2003).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations